scholarly journals Elastic and inelastic local strain fields in composites with coated fibers or particles: theory and validation

2019 ◽  
Vol 24 (9) ◽  
pp. 2858-2894 ◽  
Author(s):  
George Chatzigeorgiou ◽  
Fodil Meraghni

This paper deals with mean field multiscale approaches for coated fiber- or particle-reinforced composites under nonlinear strain. The current work attempts to extend Dvorak’s well-known transformation field analysis for mean field approaches, in which the composite’s constitutive law is split into an elastic and an inelastic part. The classical Eshelby’s inhomogeneity problem considering eigenstrains is revisited in order to address the presence of a coating layer. For this scope, three different methodologies are employed, one for general ellipsoidal inhomogeneities, a modified composite cylinder method for long cylindrical fibers and a modified composite sphere method for spherical particles. After identifying proper interaction tensors for the inhomogeneity and its coating layer, the composite’s overall response is evaluated by extending classical mean field techniques, such as the Mori–Tanaka and the self-consistent methods. Numerical examples illustrate the differences in macroscopic and microscopic predictions between the general approach and the modified composite cylinder and sphere Assemblages.

2010 ◽  
Vol 89-91 ◽  
pp. 6-11
Author(s):  
E. Sacco ◽  
Daniela Addessi ◽  
Achille Paolone

The paper deals with the problem of the determination of the in-plane behavior of periodic masonry material. The masonry is considered as a composite material obtained as a regular distribution of blocks connected by horizontal and vertical mortar joints. The macromechanical equivalent Cosserat medium is derived by a rational homogenization procedure based on the Transformation Field Analysis. The micromechanical analysis is developed considering a Cauchy model for the masonry components. In particular, linear elastic constitutive relationship is considered for the blocks, while nonlinear constitutive law is adopted for the mortar joints, accounting for the damage and friction phenomena occurring during the loading history. Numerical applications are performed in order to assess the performances of the proposed procedure in reproducing the mechanical behavior of the masonry material.


1994 ◽  
Vol 343 ◽  
Author(s):  
J. A. Floro ◽  
C. V. Thompson

ABSTRACTAbnormal grain growth is characterized by the lack of a steady state grain size distribution. In extreme cases the size distribution becomes transiently bimodal, with a few grains growing much larger than the average size. This is known as secondary grain growth. In polycrystalline thin films, the surface energy γs and film/substrate interfacial energy γi vary with grain orientation, providing an orientation-selective driving force that can lead to abnormal grain growth. We employ a mean field analysis that incorporates the effect of interface energy anisotropy to predict the evolution of the grain size/orientation distribution. While abnormal grain growth and texture evolution always result when interface energy anisotropy is present, whether secondary grain growth occurs will depend sensitively on the details of the orientation dependence of γi.


Sign in / Sign up

Export Citation Format

Share Document