homogenization procedure
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Vol 15 (58) ◽  
pp. 319-343
Author(s):  
Karim Benyahi ◽  
Youcef Bouafia ◽  
Mohand Said Kachi ◽  
Sarah Benakli ◽  
Amel Hamri

This work deals with the coupling between a periodic homogenization procedure and a damage process occurring in a RVE of inclusion composite materials. We mainly seek on the one hand to determine the effective mechanical properties according to the different volume fractions and forms of inclusions for a composite with inclusions at the macroscopic level, and on the other hand to explore the rupture mechanisms that can take place at the microstructure level. To do this; the first step is to propose a periodic homogenization procedure to predict the homogenized mechanical characteristics of an inclusion composite. This homogenization procedure is applied to the theory based on finite element analysis by the Abaqus calculation code. The inclusions are modeled by a random object modeler, and the periodic homogenization method is implemented by python scripts. It is then a matter of introducing the damage into the problem of homogenization, that is to say; once the homogenized characteristics are assessed in the absence of the damage initiated by microcracks and micro cavitations, it is then possible to introduce damage models by a subroutine (Umat) in the Abaqus calculation code. The verifications carried out focused on RVE of composite materials with inclusions.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 365
Author(s):  
Marcus Höring ◽  
Sabrina Krautbauer ◽  
Louisa Hiltl ◽  
Verena Babl ◽  
Alexander Sigruener ◽  
...  

Lipidomics aim to quantify lipid species in all kinds of samples, including tissues. To subject a fixed amount of sample to various workflows, tissue homogenates were frequently prepared at defined concentrations in water or by addition of organic solvents. Here, we investigated this first step of tissue lipidomics by quantitative flow injection analysis coupled to Fourier-Transform mass spectrometry (FTMS). The influence of sample concentration, solvent composition, and homogenization procedure on the recovery of lipids was studied in murine liver. Liver homogenates were prepared either by grinding tissue in liquid nitrogen or by bead-based homogenization. Ground samples were dissolved at different concentrations in water, methanol, and water/methanol = 1/1 (v/v). Here, lipid recovery depends on solvent composition and sample concentration. The recovery of nonpolar lipid classes, including triglycerides and cholesteryl ester, was decreased in methanolic homogenates. In contrast, due to superior dispersion of precipitates, bead-based homogenization resulted in efficient lipid recovery independent of the solvent composition. However, lipid distribution within samples, i.e., lipid content of supernatant and pellet following centrifugation, was altered substantially by solvent composition. In conclusion, accurate lipid quantification of tissue homogenates requires evaluation of solvent composition, sample concentration, as well as the homogenization method to guarantee efficient lipid recovery. Due to a potential loss of lipids, removal of precipitates by centrifugation prior to lipid extraction should be avoided.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1976
Author(s):  
Tomasz Garbowski ◽  
Tomasz Gajewski

Knowing the material properties of individual layers of the corrugated plate structures and the geometry of its cross-section, the effective material parameters of the equivalent plate can be calculated. This can be problematic, especially if the transverse shear stiffness is also necessary for the correct description of the equivalent plate performance. In this work, the method proposed by Biancolini is extended to include the possibility of determining, apart from the tensile and flexural stiffnesses, also the transverse shear stiffness of the homogenized corrugated board. The method is based on the strain energy equivalence between the full numerical 3D model of the corrugated board and its Reissner-Mindlin flat plate representation. Shell finite elements were used in this study to accurately reflect the geometry of the corrugated board. In the method presented here, the finite element method is only used to compose the initial global stiffness matrix, which is then condensed and directly used in the homogenization procedure. The stability of the proposed method was tested for different variants of the selected representative volume elements. The obtained results are consistent with other technique already presented in the literature.


2020 ◽  
Vol 995 ◽  
pp. 168-173
Author(s):  
Zdeněk Prošek ◽  
Vladimír Hrbek ◽  
Petr Bílý ◽  
Lukáš Vráblík

The advantages of supplementary cementitious materials (SCM) use in concrete, such as reduced cement consumption and overall material improvement (durability, chemical resistance, etc.), are widely known. Our research focuses on two major factors connected to high performance concrete (HPC) containing SCM, the content of selected SCM and the homogenization process used for concrete mixture. Both of these aspects of this research were addressed by the authors from macro-level of the material. In this contribution, the focus is directed on microscopical performance of concrete mixtures with highest macro-mechanical features with respect to both homogenization procedure and SCM containment.


2020 ◽  
Vol 71 (4) ◽  
pp. 419-430
Author(s):  
Nga Nguyen Thi Thu ◽  
Hung Tran Nam

In hybrid structures, material layers of different mechanical properties are integrated to increase bearing capacity. When the difference in mechanical properties or thickness of the material layers is very large, debonding usually occurs along the interface between the two layers. This study uses a homogenization procedure combined with asymptotic algorithm applied on weaker/thinner materials to determine the interface stiffnesses for such structures. All the material layers and the interface are assumed to be linear elastic. Comprising with the available methods and numerical simulation results showed that the proposed model is more suitable with the work of the structures in reality. Furthermore, in this method the interface stiffnesses can be easily determined through the number and length of cracks and the dry or saturated state of the medium are also considered.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1632
Author(s):  
Kim Pham ◽  
Agnès Maurel ◽  
Simon Félix ◽  
Sébastien Guenneau

This study follows from Maurel et al., Phys. Rev. B 98, 134311 (2018), where we reported on direct numerical observations of out-of-plane shear surface waves propagating along an array of plates atop a guiding layer, as a model for a forest of trees. We derived closed form dispersion relations using the homogenization procedure and investigated the effect of heterogeneities at the top of the plates (the foliage of trees). Here, we extend the study to the derivation of a homogenized model accounting for heterogeneities at both endings of the plates. The derivation is presented in the time domain, which allows for an energetic analysis of the effective problem. The effect of these heterogeneous endings on the properties of the surface waves is inspected for hard heterogeneities. It is shown that top heterogeneities affect the resonances of the plates, hence modifying the cut-off frequencies of a wave mathematically similar to the so-called Spoof Plasmon Polariton (SPP) wave, while the bottom heterogeneities affect the behavior of the layer, hence modifying the dispersion relation of the Love waves. The complete system simply mixes these two ingredients, resulting in hybrid surface waves accurately described by our model.


2020 ◽  
Vol 90 (6) ◽  
pp. 1009 ◽  
Author(s):  
В.И. Пономаренко ◽  
И.М. Лагунов

On the basis of the solution of the diffraction problem, the effective permittivity of the composite material consisting of alternating planar lattices of resistive squares displaced relative to each other and located in the dielectric layer is calculated. It is shown that the dispersion has a relaxation character. It is shown that it is possible to vary the dispersion characteristic over a wide range by varying the parameters of the structure. It is shown that the mutual displacement of lattices significantly changes the dispersion of the dielectric constant of the structure. The ratio of the wavelength to the period of the structure is estimated, at which the homogenization procedure is adequate.


Sign in / Sign up

Export Citation Format

Share Document