Genotoxicity of Aqueous Extract From Heated Cooking Oils and its Suppression by Lactobacilli

2009 ◽  
Vol 15 (3) ◽  
pp. 267-273 ◽  
Author(s):  
M. Isidori ◽  
A. Parrella

In the present study the mutagenic and genotoxic effects of aqueous extracts from six cooking oils (extra vergine olive, peanut, sunflower, soybean, corn, and various seeds oils) heated to the respective smoke point were investigated. The Ames test and the SOS Chromotest were carried out for this evaluation. The same oils were also tested after their re-frying, simulating domestic reuse process. Furthermore, the ability of different lactobacilli to reduce the potential genotoxic activity of the fried and re-fried oils was determined applying SOS Chromotest after co-incubation of samples with lactobacilli. The results showed that all the fried oils did not produce mutagenic effects while they induced a SOS response with the highest induction factor for the corn oil. Double heat-treatment caused an increase of the genotoxic activity until two times the first heating. The most susceptible oil to the re-frying procedure was the sunflower oil. The antigenotoxicity results were expressed as percent of genotoxicity inhibition. All the tested strains of lactobacilli exhibited antigenotoxic properties on the fried oils.

Genetika ◽  
2017 ◽  
Vol 49 (2) ◽  
pp. 387-397
Author(s):  
Jasna Bosnjak-Neumüller ◽  
Ninoslav Djelic ◽  
Milena Radakovic ◽  
Stoimir Kolarevic ◽  
Dragana Mitic-Culafic ◽  
...  

There is increasing evidence that substances which are normally present in human or animal bodies may, under the certain circumstances, exhibit deleterious effects on genetic material, therefore acting as endogenous mutagenic agents. Since hormones represent one of the best studied endogenous mutagens, some research focused on the possible role of thyroid hormone in mutagenesis and carcinogenesis. Indeed, thyroid hormones accelerate aerobic metabolism and production of reactive oxygen species (ROS) and, therefore, may exhibit mutagenic effects in various test systems on mammalian cells. However, possible mutagenic effects on prokaryotic DNA has not been investigated so far. Hence, the aim of this research was to compare the sensitivity of TA 100 Salmonella typhimurium with and without metabolic activation with S9 fraction, and human lymphocytes to possible genotoxic effects of triiodothyronine (T3). Therefore, we used the reverse mutation assay on S. typhimurium (Ames test) and in vitro Comet assay in isolated peripheral blood human lymphocytes. In both tests-systems a broad spectrum of T3 concentrations was applied. The obtained results showed absence of genotoxic effects of T3 in bacterial reverse mutation assay and very profound genotoxic effects in human lymphocytes at concentrations higher than 15 ?M. We only observed cytotoxic effects in bacterial system at very high T3 concentrations (300 and 500 ?M). In conclusion, T3 was unable to increase the level of reverse mutations in Ames test both with and without S9 mix. Therefore, it seems that ROS production in mitochondria may be the primary cause of DNA damage caused by T3 in mammalian cells.


2006 ◽  
Vol 4 (1) ◽  
pp. 22-27
Author(s):  
Petimat M Djambetova ◽  
Nina V Reutova

The plant test system soybean (Glycine max. (L.) Merill) line T219 turned out to be more sensitive than standart Ames test for evaluation of the mutagenic effect of soil, contaminated by products of combustion and domestic cottage processing of oil. It is preferable to use plant test systems for such investigations because they are more sensitive, simple and inexpensive in comparison with microbial ones.


2017 ◽  
Author(s):  
Tengyu Liu ◽  
Zijun Li ◽  
ManNin Chan ◽  
Chak K. Chan

Abstract. Cooking emissions can potentially contribute to secondary organic aerosol (SOA) but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e. corn, canola, sunflower, peanut and olive oils) was investigated in a potential aerosol mass (PAM) chamber. Experiments were conducted at 19–20 ºC and 65–70 % RH. The characterization instruments included a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS). The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of mono-unsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1.7 × 1011 molecules cm−3 s, was 1.35 ± 0.30 µg min−1, three orders of magnitude lower compared with emission rates of fine particulate matter (PM2.5) from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol) in ambient air, with R2 ranging from 0.74 to 0.88, suggesting that COA might not be entirely primary in origin. The average carbon oxidation state (OSc) of SOA was −1.51–−0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA) and semi-volatile oxygenated organic aerosol (SV-OOA), indicating that SOA in these experiments was lightly oxidized.


2005 ◽  
Vol 24 (3_suppl) ◽  
pp. 65-74

Octyldodecyl Stearoyl stearate is an ester that functions as a skin-conditioning agent and viscosity-increasing agent. It is reported to be used in 105 cosmetic products at concentrations from 2% to 15%. In an isolated human skin permeation and penetration study, 0.005% of the applied dose permeated the skin, around 3% was found in the epidermis, around 1.5% was in tape stripped skin layers, and around 95% stayed in the material applied to the skin. A formulation having 20.6 % Octyldodecyl Stearoyl stearate was classified as minimally to mildly irritating in an in vitro ocular irritation assay. Several tests of products containing from 7.5% to 12.7% Octyldodecyl Stearoyl stearate using rabbits produced minimal to mild ocular irritation. One test of 100% Octyldodecyl Stearoyl stearate (a trade compound) and another of 10% Octyldodecyl Stearoyl stearate in corn oil using rabbits produced no ocular irritation. Tests using rabbits demonstrated that Octyldodecyl Stearoyl stearate at use concentrations was non- to mildly irritating to skin; only one study reported moderate irritation. Octyldodecyl Stearoyl stearate was not mutagenic, with or without S-9 activation, in an Ames test and did not produce a significant increase in micronucleated cells in a mouse in vivo study. In clinical single-insult patch tests at use concentrations, Octyldodecyl Stearoyl stearate was nonirritating to mildly irritating; in a cumulative irritation study, it caused mild irritation. Octyldodecyl Stearoyl stearate was nonsensitizing in clinical tests. Because few toxicity data were available on Octyldodecyl Stearoyl Stearate, summaries of data from existing safety assessments of related ingredients (Octyl Dodecanol, Stearic Acid, and Octyl Stearate) were included. Undiluted Octyl Dodecanol was nontoxic during acute oral and dermal studies using rats and guinea pigs. Stearic Acid was nontoxic to rats during acute oral studies, but caused toxicity during subchronic studies. Rabbits treated topically with the acid were not affected adversely, and mild erythema and slight induration were observed when Stearic Acid was administered intradermally to guinea pigs and rabbits. Octyl stearate had very low acute oral toxicity in rats and mice. Octyl Dodecanol produced only transient mild ocular irritation in rabbits when administered at concentrations up to 100%. Octyl Dodecanol (30% and 100%) was nonirritating to skin in one study using rabbits. In another study using multiple species, 100% Octyl Dodecanol (described as technical grade) caused severe skin irritation in rabbits, moderate irritation in guinea pigs and rats, and no irritation in swine. Stearic Acid was non- to moderately irritating in animal studies, and did not cause photosensitization. In studies using rabbits, undiluted Octyl stearate caused slight, transient ocular irritation, and minimal skin irritation. Stearic Acid did not induce mitotic crossovers and aneuploidy in Saccharomyces cerevisiae, and was nonmutagenic in the Ames test. In a feeding study using mice, Stearic Acid was noncarcinogenic at doses up to 50 g/kg/day. Mice given subcutaneous injections of the acid had low incidences of carcinomas, sarcomas, and lymphomas. In clinical studies, concentrations of up to 100% Octyl Dodecanol were non- to mildly irritating, nonsensitizing, nonphototoxic, and non-photosensitizing. Stearic Acid was nonirritating at concentrations up to 100%, and at concentrations up to 13% it was nonsensitizing and nonphotosensitizing. Octyl stearate (7.6%) in formulation was nonirritating, nonsensitizing, and nonphotosensitizing. Based on skin permeation and penetration data, the Panel does not expect any significant amount of Octyldodecyl Stearoyl stearate to be systemically available. There is no evidence of systemic toxicity associated with any of the related chemicals reviewed in previous safety assessments. None of the available toxicology or clinical data suggest a concern about adverse skin reactions to Octyldodecyl Stearoyl Stearate, or to any of the related chemicals. There is no evidence of ocular toxicity, except for a mild, transient ocular irritation associated with Octyldodecyl Stearoyl stearate and the related chemicals. Overall, Octyldodecyl Stearoyl stearate was considered safe as used in cosmetics.


Sign in / Sign up

Export Citation Format

Share Document