scholarly journals Formation of secondary organic aerosols from gas–phase emissions of heated cooking oils

2017 ◽  
Author(s):  
Tengyu Liu ◽  
Zijun Li ◽  
ManNin Chan ◽  
Chak K. Chan

Abstract. Cooking emissions can potentially contribute to secondary organic aerosol (SOA) but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e. corn, canola, sunflower, peanut and olive oils) was investigated in a potential aerosol mass (PAM) chamber. Experiments were conducted at 19–20 ºC and 65–70 % RH. The characterization instruments included a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS). The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of mono-unsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1.7 × 1011 molecules cm−3 s, was 1.35 ± 0.30 µg min−1, three orders of magnitude lower compared with emission rates of fine particulate matter (PM2.5) from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol) in ambient air, with R2 ranging from 0.74 to 0.88, suggesting that COA might not be entirely primary in origin. The average carbon oxidation state (OSc) of SOA was −1.51–−0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA) and semi-volatile oxygenated organic aerosol (SV-OOA), indicating that SOA in these experiments was lightly oxidized.

2017 ◽  
Vol 17 (12) ◽  
pp. 7333-7344 ◽  
Author(s):  
Tengyu Liu ◽  
Zijun Li ◽  
ManNin Chan ◽  
Chak K. Chan

Abstract. Cooking emissions can potentially contribute to secondary organic aerosol (SOA) but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e., corn, canola, sunflower, peanut and olive oils) was investigated in a potential aerosol mass (PAM) chamber. Experiments were conducted at 19–20 °C and 65–70 % relative humidity (RH). The characterization instruments included a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS). The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1. 7 × 1011 molecules cm−3 s, was 1. 35 ± 0. 30 µg min−1, 3 orders of magnitude lower compared with emission rates of fine particulate matter (PM2. 5) from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol) in ambient air, with R2 ranging from 0.74 to 0.88. The average carbon oxidation state (OSc) of SOA was −1.51 to −0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA) and semi-volatile oxygenated organic aerosol (SV-OOA), indicating that SOA in these experiments was lightly oxidized.


2015 ◽  
Vol 15 (6) ◽  
pp. 3063-3075 ◽  
Author(s):  
A. T. Lambe ◽  
P. S. Chhabra ◽  
T. B. Onasch ◽  
W. H. Brune ◽  
J. F. Hunter ◽  
...  

Abstract. We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm−3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm−3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm−3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.


2015 ◽  
Vol 15 (14) ◽  
pp. 8077-8100 ◽  
Author(s):  
K. P. Wyche ◽  
P. S. Monks ◽  
K. L. Smallbone ◽  
J. F. Hamilton ◽  
M. R. Alfarra ◽  
...  

Abstract. Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modelling in order to ultimately identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least-squares discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Results show that "model" biogenic oxidative systems can be successfully separated and classified according to their oxidation products. Furthermore, a holistic view of results obtained across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidised gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i.e. toluene) oxidation and "more realistic" plant mesocosm systems, demonstrates that such an ensemble of chemometric mapping has the potential to be used for the classification of more complex spectra of unknown origin. More specifically, the addition of mesocosm data from fig and birch tree experiments shows that isoprene and monoterpene emitting sources, respectively, can be mapped onto the statistical model structure and their positional vectors can provide insight into their biological sources and controlling oxidative chemistry. The potential to extend the methodology to the analysis of ambient air is discussed using results obtained from a zero-dimensional box model incorporating mechanistic data obtained from the Master Chemical Mechanism (MCMv3.2). Such an extension to analysing ambient air would prove a powerful asset in assisting with the identification of SOA sources and the elucidation of the underlying chemical mechanisms involved.


2017 ◽  
Vol 17 (11) ◽  
pp. 7143-7155 ◽  
Author(s):  
Christos Kaltsonoudis ◽  
Evangelia Kostenidou ◽  
Evangelos Louvaris ◽  
Magda Psichoudaki ◽  
Epameinondas Tsiligiannis ◽  
...  

Abstract. Cooking emissions can be a significant source of fine particulate matter in urban areas. In this study the aerosol- and gas-phase emissions from meat charbroiling were characterized. Greek souvlakia with pork were cooked using a commercial charbroiler and a fraction of the emissions were introduced into a smog chamber where after a characterization phase they were exposed to UV illumination and oxidants. The particulate and gas phases were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a proton-transfer-reaction mass spectrometer (PTR-MS) correspondingly. More than 99 % of the aerosol emitted was composed of organic compounds, while black carbon (BC) contributed 0.3 % and the inorganic species less than 0.5 % of the total aerosol mass. The initial O  :  C ratio was approximately 0.09 and increased up to 0.30 after a few hours of chemical aging (exposures of 1010 molecules cm−3 s for OH and 100 ppb h for ozone). The initial and aged AMS spectra differed considerably (θ =  27°). Ambient measurements were also conducted during Fat Thursday in Patras, Greece, when traditionally meat is charbroiled everywhere in the city. Positive matrix factorization (PMF) revealed that cooking organic aerosol (COA) reached up to 85 % of the total OA from 10:00 to 12:00 LST that day. The ambient COA factor in two major Greek cities had a mass spectrum during spring and summer similar to the aged meat charbroiling emissions. In contrast, the ambient COA factor during winter resembled strongly the fresh laboratory meat charbroiling emissions.


2016 ◽  
Author(s):  
Kalliopi Florou ◽  
Dimitrios K. Papanastasiou ◽  
Michael Pikridas ◽  
Christos Kaltsonoudis ◽  
Evangelos Louvaris ◽  
...  

Abstract. The composition of fine particulate matter (PM) in two major Greek cities (Athens and Patras) was measured during two wintertime campaigns conducted in 2013 and 2012, respectively. A major goal of this study is to quantify the sources of organic aerosol (OA) and especially residential wood burning, which has dramatically increased due to the Greek financial crisis. A high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in both sites. PM with diameter less than 1 μm (PM1) consisted mainly of organics (60–75 %), black carbon (5–20 %) and inorganic salts (around 20 %) in both Patras and Athens. In Patras, during evening hours, PM1 concentrations were as high as 100 μg m–, of which 85 % were OA. In Athens, the maximum hourly value observed during nighttime was 140 μg m−3, of which 120 μg m−3 was OA. 40–60 % of the average OA was due to biomass burning for both cities, while the remaining mass originated from traffic (12–17 %), cooking (12–16 %) and long-range transport (18–24%). The contribution of residential wood burning was even higher (80–90 %) during the nighttime peak concentration periods, and less than 10 % during daytime. Cooking OA contributed up to 75 % during mealtime hours in Patras, while traffic-related OA was responsible for 60–70 % of the OA during the morning rush hour.


2015 ◽  
Vol 15 (3) ◽  
pp. 3455-3491 ◽  
Author(s):  
E. Kostenidou ◽  
K. Florou ◽  
C. Kaltsonoudis ◽  
M. Tsiflikiotou ◽  
S. Vratolis ◽  
...  

Abstract. The concentration and chemical composition of the non-refractory fine particulate matter (NR-PM1) and black carbon (BC) levels were measured during the summer of 2012 in the suburbs of two Greek cities, Patras and Athens, in an effort to better understand the chemical processing of particles in the high photochemical activity environment of the Eastern Mediterranean. The composition of PM1 was surprisingly similar in both areas demonstrating the importance of regional sources for the corresponding pollution levels. The PM1 average mass concentration was 9–14 μg m−3. The contribution of sulphate was around 38%, while organic aerosol (OA) contributed approximately 45% in both cases. PM1 nitrate levels were low (2%). The oxygen to carbon (O : C) atomic ratio was 0.50 ± 0.08 in Patras and 0.47 ± 0.11 in Athens. In both cases the PM1 was acidic. Positive matrix factorization (PMF) was applied to the high resolution organic aerosol mass spectra obtained by an Aerodyne High Resolution Aerosol Mass Spectrometer (HR-AMS). For Patras five OA sources could be identified: 19% very oxygenated OA (V-OOA), 38% moderately oxygenated OA (M-OOA), 21% biogenic oxygenated OA (b-OOA), 7% hydrocarbon-like OA (HOA-1) associated with traffic sources and 15% hydrocarbon-like OA (HOA-2) related to other primary emissions (including cooking OA). For Athens the corresponding source contributions were: V-OOA (35%), M-OOA (30%), HOA-1 (18%) and HOA-2 (17%). In both cities the major component was OOA, suggesting that under high photochemical conditions most of the OA in the Eastern Mediterranean is quite aged. The contribution of the primary sources (HOA-1 and HOA-2) was important (22% in Patras and 33% in Athens) but not dominant.


2009 ◽  
Vol 9 (1) ◽  
pp. 1873-1905
Author(s):  
A. W. H. Chan ◽  
K. E. Kautzman ◽  
P. S. Chhabra ◽  
J. D. Surratt ◽  
M. N. Chan ◽  
...  

Abstract. Current atmospheric models do not include secondary organic aerosol (SOA) production from gas-phase reactions of polycyclic aromatic hydrocarbons (PAHs). Recent studies have shown that primary semivolatile emissions, previously assumed to be inert, undergo oxidation in the gas phase, leading to SOA formation. This opens the possibility that low-volatility gas-phase precursors are a potentially large source of SOA. In this work, SOA formation from gas-phase photooxidation of naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 1,2-dimethylnaphthalene (1,2-DMN) is studied in the Caltech dual 28-m3 chambers. Under high-NOx conditions and aerosol mass loadings between 10 and 40 μg m


2011 ◽  
Vol 8 (2) ◽  
pp. 115 ◽  
Author(s):  
Melita Keywood ◽  
Helen Guyes ◽  
Paul Selleck ◽  
Rob Gillett

Environmental contextParticulate matter is detrimental to human health necessitating air quality standards to ensure that populations are not exposed to harmful levels of air pollutants. We quantified, for the first time in an Australian city, secondary organic aerosol produced in the atmosphere by chemical reactions, and show that it constitutes a significant fraction of the fine particulate matter. Secondary organic aerosol should be considered in regulations to control particulate matter and ozone. AbstractThe contribution of secondary organic aerosol (SOA) to particulate mass (PM) in an Australian urban airshed is quantified for the first time in this work. SOA is estimated indirectly using the elemental carbon tracer method. The contribution of primary organic carbon (OC) to PM is determined using ambient air quality data, which is used to indicate photochemical activity and as a tracer for a general vehicular combustion source. In addition, levoglucosan concentrations were used to determine the contribution of wood heater emissions to primary OC. The contribution of bushfire smoke to primary OC emissions was determined from the organic and elemental carbon (OC/EC) ratios measured in bushfire source samples. The median annual SOA concentration determined in this work was 1.1 µg m–3, representing ~13% of PM2.5 median concentrations on an annual basis (assuming a ratio of organic mass (OM) to OC of 1.6). Significantly higher SOA concentrations were determined when bushfire smoke affected the airshed; however, the SOA fraction of PM2.5 was greatest during the autumn and early winter months when the formation of inversions allows build up of particles produced by domestic wood-heater emissions.


2017 ◽  
Author(s):  
Hongyu Guo ◽  
Athanasios Nenes ◽  
Rodney J. Weber

Abstract. Overprediction of fine particle ammonium-sulfate molar ratios (R) by thermodynamic models is suggested as evidence for an organic film that only inhibits the equilibration of gas phase ammonia (but not water or nitric acid) with aerosol sulfate and questions the equilibrium assumption long thought to apply for submicron aerosol. The ubiquity of such organic films implies significant impacts on aerosol chemistry. We test the organic film hypothesis by analyzing ambient observations with a thermodynamic model and find that R and ammonia partitioning can be accurately reproduced when small amounts of nonvolatile cations (NVC), consistent with observations, are considered in the thermodynamic analysis. Exclusion of NVCs results in predicted R consistently near 2. The error in R is positively correlated with NVC and not organic aerosol mass fraction or concentration. These results strongly challenge the postulated ability of organic films to perturb aerosol acidity or prevent ammonia from achieving gas-particle equilibrium for the conditions considered.


2017 ◽  
Vol 17 (2) ◽  
pp. 1453-1469 ◽  
Author(s):  
Martin Brüggemann ◽  
Laurent Poulain ◽  
Andreas Held ◽  
Torsten Stelzer ◽  
Christoph Zuth ◽  
...  

Abstract. The chemical composition of ambient organic aerosols was analyzed using complementary mass spectrometric techniques during a field study in central Europe in July 2014 (Fichtelgebirge – Biogenic Emission and Aerosol Chemistry, F-BEACh 2014). Among several common biogenic secondary organic aerosol (BSOA) marker compounds, 93 acidic oxygenated hydrocarbons were detected with elevated abundances and were thus attributed to be characteristic for the organic aerosol mass at the site. Monoterpene measurements exhibited median mixing ratios of 1.6 and 0.8 ppbV for in and above canopy levels respectively. Nonetheless, concentrations for early-generation oxidation products were rather low, e.g., pinic acid (c  =  4.7 (±2.5) ng m−3). In contrast, high concentrations were found for later-generation photooxidation products such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA, c  =  13.8 (±9.0) ng m−3) and 3-carboxyheptanedioic acid (c  =  10.2 (±6.6) ng m−3), suggesting that aged aerosol masses were present during the campaign period. In agreement, HYSPLIT trajectory calculations indicate that most of the arriving air masses traveled long distances (>  1500 km) over land with high solar radiation. In addition, around 47 % of the detected compounds from filter sample analysis contained sulfur, confirming a rather high anthropogenic impact on biogenic emissions and their oxidation processes. Among the sulfur-containing compounds, several organosulfates, nitrooxy organosulfates, and highly oxidized organosulfates (HOOS) were tentatively identified by high-resolution mass spectrometry. Correlations among HOOS, sulfate, and highly oxidized multifunctional organic compounds (HOMs) support the hypothesis of previous studies that HOOS are formed by reactions of gas-phase HOMs with particulate sulfate. Moreover, periods with high relative humidity indicate that aqueous-phase chemistry might play a major role in HOOS production. However, for dryer periods, coinciding signals for HOOS and gas-phase peroxyradicals (RO2•) were observed, suggesting RO2• to be involved in HOOS formation.


Sign in / Sign up

Export Citation Format

Share Document