scholarly journals A Perspective on the Kinetics of Covalent and Irreversible Inhibition

2016 ◽  
Vol 22 (1) ◽  
pp. 3-20 ◽  
Author(s):  
John M. Strelow

The clinical and commercial success of covalent drugs has prompted a renewed and more deliberate pursuit of covalent and irreversible mechanisms within drug discovery. A covalent mechanism can produce potent inhibition in a biochemical, cellular, or in vivo setting. In many cases, teams choose to focus on the consequences of the covalent event, defined by an IC50 value. In a biochemical assay, the IC50 may simply reflect the target protein concentration in the assay. What has received less attention is the importance of the rate of covalent modification, defined by kinact/KI. The kinact/KI is a rate constant describing the efficiency of covalent bond formation resulting from the potency (KI) of the first reversible binding event and the maximum potential rate (kinact) of inactivation. In this perspective, it is proposed that the kinact/KI should be employed as a critical parameter to identify covalent inhibitors, interpret structure-activity relationships (SARs), translate activity from biochemical assays to the cell, and more accurately define selectivity. It is also proposed that a physiologically relevant kinact/KI and an (unbound) AUC generated from a pharmacokinetic profile reflecting direct exposure of the inhibitor to the target protein are two critical determinants of in vivo covalent occupancy. A simple equation is presented to define this relationship and improve the interpretation of covalent and irreversible kinetics.

2020 ◽  
Author(s):  
Angus Voice ◽  
Gary Tresadern ◽  
Rebecca Twidale ◽  
Herman Van Vlijmen ◽  
Adrian Mulholland

<p>Ibrutinib is the first covalent inhibitor of Bruton’s tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition is crucial for the design of safer and more selective covalent inhibitors that target BTK. There are questions surrounding the precise mechanism of covalent bond formation in BTK as there is no appropriate active site residue that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. To address this, we have investigated several mechanistic pathways of covalent modification of C481 in BTK by ibrutinib using QM/MM reaction simulations. The lowest energy pathway we identified involves a direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (DG<sup>‡</sup>=10.5 kcal mol<sup>-1</sup>) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and related proteins. </p>


2020 ◽  
Author(s):  
Angus Voice ◽  
Gary Tresadern ◽  
Rebecca Twidale ◽  
Herman Van Vlijmen ◽  
Adrian Mulholland

<p>Ibrutinib is the first covalent inhibitor of Bruton’s tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition is crucial for the design of safer and more selective covalent inhibitors that target BTK. There are questions surrounding the precise mechanism of covalent bond formation in BTK as there is no appropriate active site residue that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. To address this, we have investigated several mechanistic pathways of covalent modification of C481 in BTK by ibrutinib using QM/MM reaction simulations. The lowest energy pathway we identified involves a direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (DG<sup>‡</sup>=10.5 kcal mol<sup>-1</sup>) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and related proteins. </p>


2015 ◽  
Vol 59 (8) ◽  
pp. 4446-4452 ◽  
Author(s):  
Vadim Makarov ◽  
João Neres ◽  
Ruben C. Hartkoorn ◽  
Olga B. Ryabova ◽  
Elena Kazakova ◽  
...  

ABSTRACT8-Nitro-benzothiazinones (BTZs), such as BTZ043 and PBTZ169, inhibit decaprenylphosphoryl-β-d-ribose 2′-oxidase (DprE1) and display nanomolar bactericidal activity againstMycobacterium tuberculosisin vitro. Structure-activity relationship (SAR) studies revealed the 8-nitro group of the BTZ scaffold to be crucial for the mechanism of action, which involves formation of a semimercaptal bond with Cys387 in the active site of DprE1. To date, substitution of the 8-nitro group has led to extensive loss of antimycobacterial activity. Here, we report the synthesis and characterization of the pyrrole-benzothiazinones PyrBTZ01 and PyrBTZ02, non-nitro-benzothiazinones that retain significant antimycobacterial activity, with MICs of 0.16 μg/ml againstM. tuberculosis. These compounds inhibit DprE1 with 50% inhibitory concentration (IC50) values of <8 μM and present favorablein vitroabsorption-distribution-metabolism-excretion/toxicity (ADME/T) andin vivopharmacokinetic profiles. The most promising compound, PyrBTZ01, did not show efficacy in a mouse model of acute tuberculosis, suggesting that BTZ-mediated killing through DprE1 inhibition requires a combination of both covalent bond formation and compound potency.


Author(s):  
S.M.A. Abidi ◽  
Kavita Singh ◽  
A. Rehman ◽  
R. Ullah ◽  
L. Rehman ◽  
...  

Paramphistomosis is a chronic, debilitating parasitic disease of livestock prevalent in the tropical and sub-tropical countries. Globally there is a heavy reliance on anthelmintics but concerns over drug resistance encourage the search for new leads. Metalloproteinases play a significant role in the biology and life cycle of parasitic helminths. The efficacy of metalloproteinase inhibitor, 1,10-Phenanthroline (1,10-phe) which is commonly used as a specific enzyme inhibitor in biochemical assays, was tested in vitro on Gigantocotyle explanatum tegument as a marker of anthelmintic action. The scanning electron microscopy revealed that the tegumental surface exhibited considerable changes in the worms treated with the metalloenzyme inhibitor, 1,10-phe. The untreated control worms appeared normal showing smooth tegumental surface with abundant dome shaped papillae in the anterior to mid region, while their density was less around the acetabulum which serves as a hold-fast organ helping the worms to remain attached in biliary passage. The 1,10-phe produced significant tegumental damage when the liver amphistomes were in vitro exposed to this compound at 12.5 µM concentration. The surface changes appeared in the form of edematous ridges with prominent furrows and erosion of the dome shaped papillae with rosette shaped deep lesions as a result of which deep parenchymatous tissues were exposed. The collapse of sensory bulbs as well as sloughing of tegument, particularly in the anterior-mid region was observed. The nature of damage could be comparable to various anthelmintics used in previous studies. To the best of our knowledge this is the first report of direct exposure of amphistome worms to zinc metallo-enzyme inhibitor, however, further in vivo studies are required to ascertain the anthelmintic efficacy of 1,10-phe.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A671-A671
Author(s):  
Christian Vidal ◽  
Michael Cukan ◽  
Rajat Varma ◽  
Lawrence Iben ◽  
Tanya Berbasova ◽  
...  

BackgroundWe describe KPMW101, which was created by chemical conjugation of a CD38-specific binder to clinical grade intravenous immunoglobulin (IvIg) pooled from healthy donors. Kleo’s MATETM technology enables efficient site-directed chemical conjugation to ‘off-the-shelf’ IvIg and allows the development of antitumor agents with rapidly introduced target specificity. Our platform allows for chemical engineering of existing IvIg in a cost-efficient manner. This technology relies on synthetic compounds that consists of antibody binder with react-and-release mechanism.MethodsDesign of synthetic chemical reagents included antibody binding group capable of covalent bond formation with specific lysine, CD38 binding moiety proven to work in our clinical candidate KP1237, and tunable non-cleavable linker. Conjugation efficiency to polyclonal IvIg was evaluated using LC-MS analysis of IdeZ-digests. The binding of CD38, CD16a, and FcRn were determined by ELISA and BLI.For in vitro ADCC assays, PBMCs provided NK effector function. Daudi (CD38+) B lymphoblast cells were treated with KPMW101 or IvIg, PBMCs were introduced and incubated for 18h, and target cellular death was measured. For an in vivo IP macrophage lavage model of ADCP, SCID mice were implanted IP with CFSE-labeled Daudi cells. Mice were injected with IvIg or KPMW101 (0.21, 0.625, 1.875 mg/kg) SQ, and tumor cell counts were measured by flow cytometry. The pharmacokinetic profile of in vivo KPMW101 was determined from blood and analyzed utilizing a human Ig isotyping array.ResultsSynthetic chemical reagents with multiple linker types have been conjugated to IvIg and evaluated in biochemical assays. KPMW101 showed the highest conjugation efficiency. Binding affinity of KPMW101 to CD38 was 27nM. ELISA results show KPMW101 binds to CD16a and FcRn, indicating that conjugation does not interfere with FcR binding.In vitro ADCC results demonstrate that KPMW101 elicited CD38+ target cell killing with an EC50 of 0.91–2.09nM.In vivo studies showed that KPMW101 resulted in a 49.9–63.5% reduction of tumor cells. Pharmacokinetic profile showed stability of KPMW101 throughout the 144-hour study, whereby IgG1, IgG2, IgG3, and IgG4 isotypes were detectable.ConclusionsKPMW101 is created by chemical conjugation of CD38-specific binder to IvIg using our proprietary MATETM technology, maintaining native binding to FcRs via the Fc domain. This ensures the stability of the molecule and retains immune-mediated mechanisms of action. KPMW101 induces IvIg to adopt Fc effector mechanisms like ADCC and ADCP. Our in vitro data and in vivo studies confirm KPMW101 ability to kill tumor cells, making IvIg into an active antitumor therapeutic agent.


2019 ◽  
Author(s):  
Shiyu Chen ◽  
Matthew Bogyo

AbstractMolecules that bind macromolecular targets through direct covalent modification have found widespread applications as activity-based probes (ABPs) and as irreversible drugs. Covalent binders can be used to dynamically monitor the activity of enzymes in complex cellular environments, identify targets and induce permanent binding/inhibition of therapeutically important biomolecules. However, the general reactivity of the electrophiles needed for covalent bond formation makes control of selectivity difficult. There is currently no rapid, robust and unbiased screening method to identify new classes of covalent binding ligands from highly diverse pools of candidate molecules. Here we describe the development of a phage display method to screen for highly selective covalent binding ligands. This approach makes use of a reactive linker to form cyclic peptides on the phage surface while simultaneously introducing an electrophilic ‘warhead’ to covalently react with a nucleophile on the target. Using this approach, we identified cyclic peptides that selectively and irreversibly inhibited a cysteine protease with nanomolar potency, exceptional specificity and increased serum stability compared to a linear peptide containing the same electrophile. This approach should enable rapid, unbiased screening to identify new classes of highly selective covalent binding ligands for diverse molecular targets.


2020 ◽  
Vol 117 (13) ◽  
pp. 7131-7139 ◽  
Author(s):  
Khuchtumur Bum-Erdene ◽  
Degang Liu ◽  
Giovanni Gonzalez-Gutierrez ◽  
Mona K. Ghozayel ◽  
David Xu ◽  
...  

Ral (Ras-like) GTPases are directly activated by oncogenic Ras GTPases. Mutant K-Ras (G12C) has enabled the development of covalent K-Ras inhibitors currently in clinical trials. However, Ral, and the overwhelming majority of mutant oncogenic K-Ras, are devoid of a druggable pocket and lack an accessible cysteine for the development of a covalent inhibitor. Here, we report that covalent bond formation by an aryl sulfonyl fluoride electrophile at a tyrosine residue (Tyr-82) inhibits guanine exchange factor Rgl2-mediated nucleotide exchange of Ral GTPase. A high-resolution 1.18-Å X-ray cocrystal structure shows that the compound binds to a well-defined binding site in RalA as a result of a switch II loop conformational change. The structure, along with additional high-resolution crystal structures of several analogs in complex with RalA, confirm the importance of key hydrogen bond anchors between compound sulfone oxygen atoms and Ral backbone nitrogen atoms. Our discovery of a pocket with features found on known druggable sites and covalent modification of a bystander tyrosine residue present in Ral and Ras GTPases provide a strategy that could lead to therapeutic agent targeting oncogenic Ras mutants that are devoid of a cysteine nucleophile.


2018 ◽  
Vol 4 (4) ◽  
pp. 523-531
Author(s):  
Hina Mumtaz ◽  
Muhammad Asim Farooq ◽  
Zainab Batool ◽  
Anam Ahsan ◽  
Ashikujaman Syed

The main purpose of development pharmaceutical dosage form is to find out the in vivo and in vitro behavior of dosage form. This challenge is overcome by implementation of in-vivo and in-vitro correlation. Application of this technique is economical and time saving in dosage form development. It shortens the period of development dosage form as well as improves product quality. IVIVC reduce the experimental study on human because IVIVC involves the in vivo relevant media utilization in vitro specifications. The key goal of IVIVC is to serve as alternate for in vivo bioavailability studies and serve as justification for bio waivers. IVIVC follows the specifications and relevant quality control parameters that lead to improvement in pharmaceutical dosage form development in short period of time. Recently in-vivo in-vitro correlation (IVIVC) has found application to predict the pharmacokinetic behaviour of pharmaceutical preparations. It has emerged as a reliable tool to find the mode of absorption of several dosage forms. It is used to correlate the in-vitro dissolution with in vivo pharmacokinetic profile. IVIVC made use to predict the bioavailability of the drug of particular dosage form. IVIVC is satisfactory for the therapeutic release profile specifications of the formulation. IVIVC model has capability to predict plasma drug concentration from in vitro dissolution media.


2020 ◽  
Vol 16 ◽  
Author(s):  
Xi He ◽  
Wenjun Hu ◽  
Fanhua Meng ◽  
Xingzhou Li

Background: The broad-spectrum antiparasitic drug nitazoxanide (N) has been repositioned as a broad-spectrum antiviral drug. Nitazoxanide’s in vivo antiviral activities are mainly attributed to its metabolitetizoxanide, the deacetylation product of nitazoxanide. In reference to the pharmacokinetic profile of nitazoxanide, we proposed the hypotheses that the low plasma concentrations and the low system exposure of tizoxanide after dosing with nitazoxanide result from significant first pass effects in the liver. It was thought that this may be due to the unstable acyloxy bond of nitazoxanide. Objective: Tizoxanide prodrugs, with the more stable formamyl substituent attached to the hydroxyl group rather than the acetyl group of nitazoxanide, were designed with the thought that they might be more stable in plasma. It was anticipated that these prodrugs might be less affected by the first pass effect, which would improve plasma concentrations and system exposure of tizoxanide. Method: These O-carbamoyl tizoxanide prodrugs were synthesized and evaluated in a mouse model for pharmacokinetic (PK) properties and in an in vitro model for plasma stabilities. Results: The results indicated that the plasma concentration and the systemic exposure of tizoxanide (T) after oral administration of O-carbamoyl tizoxanide prodrugs were much greater than that produced by equimolar dosage of nitazoxanide. It was also found that the plasma concentration and the systemic exposure of tizoxanide glucuronide (TG) were much lower than that produced by nitazoxanide. Conclusion: Further analysis showed that the suitable plasma stability of O-carbamoyl tizoxanide prodrugs is the key factor in maximizing the plasma concentration and the systemic exposure of the active ingredient tizoxanide.


Sign in / Sign up

Export Citation Format

Share Document