First Report of Prenatal Ascertainment of a Fetus With Homozygous Loss of the SOX10 Gene and Phenotypic Correlation by Autopsy Examination

2017 ◽  
Vol 21 (6) ◽  
pp. 561-567
Author(s):  
David P LeBel ◽  
Daynna J Wolff ◽  
Nicholas I Batalis ◽  
Tara Ellingham ◽  
Natalie Matics ◽  
...  

The SOX10 gene plays a vital role in neural crest cell development and migration. Abnormalities in SOX10 are associated with Waardenburg syndrome Types II and IV, and these patients have recognizable clinical features. This case report highlights the first ever reported homozygous loss of function of the SOX10 gene in a human. This deletion is correlated using family history, prenatal ultrasound, microarray analysis of amniotic fluid, and ultimately, a medical autopsy examination to further elucidate phenotypic effects of this genetic variation. Incorporating the use of molecular pathology into the autopsy examination of fetuses with suspected congenital anomalies is vital for appropriate family counseling, and with the ability to use formalin-fixed and paraffin-embedded tissues, has become a practical approach in autopsy pathology.

2009 ◽  
Vol 126 ◽  
pp. S106
Author(s):  
Simone Macrí ◽  
Marco Onorati ◽  
Guidalberto Manfioletti ◽  
Robert Vignali

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Christopher J. Hindley ◽  
Alexandra Larisa Condurat ◽  
Vishal Menon ◽  
Ria Thomas ◽  
Luis M. Azmitia ◽  
...  

1983 ◽  
Vol 96 (2) ◽  
pp. 462-473 ◽  
Author(s):  
R A Rovasio ◽  
A Delouvee ◽  
K M Yamada ◽  
R Timpl ◽  
J P Thiery

Cells of the neural crest participate in a major class of cell migratory events during embryonic development. From indirect evidence, it has been suggested that fibronectin (FN) might be involved in these events. We have directly tested the role of FN in neural crest cell adhesion and migration using several in vitro model systems. Avian trunk neural crest cells adhered readily to purified plasma FN substrates and to extracellular matrices containing cellular FN. Their adhesion was inhibited by antibodies to a cell-binding fragment of FN. In contrast, these cells did not adhere to glass, type I collagen, or to bovine serum albumin in the absence of FN. Neural crest cell adhesion to laminin (LN) was significantly less than to FN; however, culturing of crest cells under conditions producing an epithelioid phenotype resulted in cells that could bind equally as well to LN as to FN. The migration of neural crest cells appeared to depend on both the substrate and the extent of cell interactions. Cells migrated substantially more rapidly on FN than on LN or type I collagen substrates; if provided a choice between stripes of FN and glass or LN, cells migrated preferentially on the FN. Migration was inhibited by antibodies against the cell-binding region of FN, and the inhibition could be reversed by a subsequent addition of exogenous FN. However, the migration on FN was random and displayed little persistence of direction unless cells were at high densities that permitted frequent contacts. The in vitro rate of migration of cells on FN-containing matrices was 50 microns/h, similar to their migration rates along the narrow regions of FN-containing extracellular matrix in migratory pathways in vivo. These results indicate that FN is important for neural crest cell adhesion and migration and that the high cell densities of neural crest cells in the transient, narrow migratory pathways found in the embryo are necessary for effective directional migration.


2020 ◽  
Vol 12 (10) ◽  
Author(s):  
Jonathan Pini ◽  
Janina Kueper ◽  
Yiyuan David Hu ◽  
Kenta Kawasaki ◽  
Pan Yeung ◽  
...  

Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 433-442 ◽  
Author(s):  
Paul A. Trainor ◽  
Dorothy Sobieszczuk ◽  
David Wilkinson ◽  
Robb Krumlauf

Cranial neural crest cells are a pluripotent population of cells derived from the neural tube that migrate into the branchial arches to generate the distinctive bone, connective tissue and peripheral nervous system components characteristic of the vertebrate head. The highly conserved segmental organisation of the vertebrate hindbrain plays an important role in pattering the pathways of neural crest cell migration and in generating the distinct or separate streams of crest cells that form unique structures in each arch. We have used focal injections of DiI into the developing mouse hindbrain in combination with in vitro whole embryo culture to map the patterns of cranial neural crest cell migration into the developing branchial arches. Our results show that mouse hindbrain-derived neural crest cells migrate in three segregated streams adjacent to the even-numbered rhombomeres into the branchial arches, and each stream contains contributions of cells from three rhombomeres in a pattern very similar to that observed in the chick embryo. There are clear neural crest-free zones adjacent to r3 and r5. Furthermore, using grafting and lineage-tracing techniques in cultured mouse embryos to investigate the differential ability of odd and even-numbered segments to generate neural crest cells, we find that odd and even segments have an intrinsic ability to produce equivalent numbers of neural crest cells. This implies that inter-rhombomeric signalling is less important than combinatorial interactions between the hindbrain and the adjacent arch environment in specific regions, in the process of restricting the generation and migration of neural crest cells. This creates crest-free territories and suggests that tissue interactions established during development and patterning of the branchial arches may set up signals that the neural plate is primed to interpret during the progressive events leading to the delamination and migration of neural crest cells. Using interspecies grafting experiments between mouse and chick embryos, we have shown that this process forms part of a conserved mechanism for generating neural crest-free zones and contributing to the separation of migrating crest populations with distinct Hox expression during vertebrate head development.


Sign in / Sign up

Export Citation Format

Share Document