Experimental and numerical investigation of sandwich structures with balsa core and hybrid corrugated composite/balsa core under three-point bending using digital image correlation

2019 ◽  
pp. 109963621882233 ◽  
Author(s):  
Saman Sayahlatifi ◽  
Gholamhossein Rahimi ◽  
Alireza Bokaei
2015 ◽  
Vol 8 (3) ◽  
pp. 323-340 ◽  
Author(s):  
A. H. A. SANTOS ◽  
R. L. S. PITANGUEIRA ◽  
G. O. RIBEIRO ◽  
R. B. CALDAS

Size effect is an important issue in concrete structures bearing in mind that it can influence many aspects of analysis such as strength, brittleness and structural ductility, fracture toughness and fracture energy, among others. Further this, ever more new methods are being developed to evaluate displacement fields in structures. In this paper an experimental evaluation of the size effect is performed applying Digital Image Correlation (DIC) technique to measure displacements on the surface of beams. Three point bending tests were performed on three different size concrete beams with a notch at the midspan. The results allow a better understanding of the size effect and demonstrate the efficiency of Digital Image Correlation to obtain measures of displacements.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5088
Author(s):  
Duyen Trinh-Duc ◽  
Andrzej Piotrowski ◽  
Cezary Ajdukiewicz ◽  
Piotr Woyciechowski ◽  
Marcin Gajewski

Concretes with dispersed reinforcement are increasingly used in structural engineering. The basic source of knowledge on their application and design are the Model-Code 2010 guidelines. These guidelines, however, apply mainly to steel rebar reinforcement and are not fully sufficient in the analysis of the load-bearing capacity of elements made of concrete with dispersed reinforcement. Therefore, scientific research in this field is carried out continuously. The main goal of our work is to provide experimental data for the calibration of constitutive models of the cracking mechanics of concrete with reinforcement in the form of steel and polypropylene fibers. This article shows the possibility of using the digital image correlation system (DIC) to achieve this goal. The method of sample preparation and the method of conducting the tests were modeled on the recommendations contained in the PN-EN 14651: 2007 standard. The tests were carried out on prismatic elements with a notch loaded in a three-point bending setup. The results of standard strength tests are presented in the form of column graphs and tables. As an extension, the results of calculations of energy dissipated in fracture process are given. Moreover, the experimentally obtained graphs of the relationship between the force, displacement and crack opening were presented, which were supplemented with the images of crack development obtained with the use of DIC. The development of the crack net is characterized not only qualitatively but also quantitatively as a function of deflection or crack mouth opening displacement. Conclusions concerning the adopted research methodology and the tested materials are presented at the end of the article.


2016 ◽  
Vol 861 ◽  
pp. 222-226
Author(s):  
Li Jie Wang ◽  
Brad Kinsey

In this paper, digital image correlation (DIC) technology and equipment were applied to research strain distribution of CuZn30 metal sheet throughout thickness during three-point bending process. Especially, a parametric study of DIC technique was conducted. The results show that the subset value and step size has a great impact on the strain distribution date. In order to obtain a lower iterations and confidence of the image, reasonable step size and subset value should be decided.


2006 ◽  
Vol 326-328 ◽  
pp. 135-138 ◽  
Author(s):  
Bing Pan ◽  
Hui Min Xie ◽  
Tao Hua ◽  
Wei Ning Wang ◽  
Yan Fang

Recently, many research works were concentrated on how to improve the accuracy of displacement fields in digital image correlation (DIC). However, the original displacement fields calculated at discrete locations using DIC are unavoidably contaminated by noises. If the strain fields are directly computed by differentiating the original displacement fields, the noises will be amplified even at a higher level and the resulting strain fields are untrustworthy. To acquire reliably estimation of strain fields, in this paper, Savitaky-Golay (SG) filters are introduced to obtain smoothed displacement fields and reasonable strain estimation. The principle of two-dimensional SG filters is described in detail first. Then images of uniaxial tensile and three-point bending experiments were used to verify the proposed approach. The resulting smoothed displacement fields and strain fields clearly show that the proposed method is simple and effective.


Sign in / Sign up

Export Citation Format

Share Document