In-plane dynamic crushing behaviors of joint-based hierarchical honeycombs with different topologies

2021 ◽  
pp. 109963622199414
Author(s):  
Xin-chun Zhang ◽  
Zhen-feng Shen ◽  
He-xiang Wu ◽  
Jiang-pan Bai

Introducing the hierarchy into cellular materials has attracted increasing attention in the effort to pursue improved absorbed-energy abilities and impact resistance. In this paper, the dynamic crushing properties and energy absorption capacities of joint-based hierarchical honeycombs with different topologies were explored by means of explicit dynamic finite element (FE) analysis using ANSYS/LS-DYNA. Four types of joint-based hierarchical honeycombs with uniform cell-wall thickness were firstly constructed by substituting each vertex of regular honeycombs with a smaller self-similar cell (hexagon or square). The respective influences of hierarchical parameters and impact velocities on in-plane dynamic deformation modes, mechanical characteristic and energy absorption of joint-based hierarchical honeycombs were discussed. Research results showed that the hierarchy had a far greater influence on the in-plane deformation modes of honeycombs. Compared with regular honeycombs, the dynamic plateau stress and specific energy absorption of joint-based hierarchical honeycombs can be improved if the proper hierarchical parameters were chosen. Adding the joint-based hierarchy into regular honeycombs can enhance the crushing stress efficiency (CSE) of the specimens. In addition, by introducing a non-dimensional dynamic sensitivity index, the dynamic shock enhancement of hierarchical honeycombs was also investigated. These researches are useful for the multi-objective dynamic optimization design and controllable properties of cellular materials.

2011 ◽  
Vol 79 ◽  
pp. 83-86
Author(s):  
Xin Chun Zhang

The in-plane dynamic crushing of hexagonal honeycombs was numerically studied by means of explicit dynamic finite element method using ANSYS/LS-DYNA. Under the assumption that the edge length and thickness were the same, the metal honeycomb models filled with convex and concave cells were established. And then the effects of expanding angle and impact velocity on the plateau stress and the energy absorption capacities of hexagonal honeycombs were discussed in detail. Numerical results show that the energy absorption capacities of convex hexagonal honeycombs are stronger than the concave ones. These results will provide some useful guides for the dynamic energy absorption design of cellular materials.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Zhi-geng Fan ◽  
Li-xin Lu ◽  
Jun Wang

The effect of fatigue damage (FD) on the energy absorption properties of precompressed honeycomb paperboard is investigated by fatigue compression experiments. The constitutive relations of honeycomb paperboard have been changed after the fatigue damage. The results show that FD has effect on plateau stress and energy absorption capacity of honeycomb paperboard after fatigue cycles but has no significant effect on densification strain. Energy absorption diagram based on the effect of FD is constructed from the stress-strain curves obtained after fatigue compression experiments. FD is a significant consideration for honeycomb paperboard after transports. The results of this paper could be used for optimization design of packaging materials.


Author(s):  
Deqiang Sun ◽  
Yujin Sun ◽  
Jincui Ben ◽  
Feng Ge ◽  
Guozhi Li ◽  
...  

Abstract The energy absorption characteristics of hexagonally packaged circular-celled honeycombs and quadrilater-ally packaged circular-celled honeycombs are obtained under in-plane quasi-static compressive loadings through finite element analysis. The stress–strain curves, deformation modes, energy absorption efficiency, specific plateau stress, normalized energy absorption and energy absorption diagrams are discussed. The cell arrangement patterns influence the shapes of stress–strain curves and deformation modes. The densification strain is in linear relationship with the relative density and the specific plateau stress is proportional to relative density. The hexagonally packaged circular-celled honeycombs have the largest specific plateau stress in the x2 direction for a given relative density. The normalized energy absorption is nearly proportional to the strain before densification and increases with increasing relative density for a given strain in one compression direction. The envelope line in the energy absorption diagram is approximately a straight line tangent to the shoulder points through the origin. The hexagonally packaged circular-celled honeycombs outperform the quadrilaterally packaged circular-celled honeycombs in in-plane energy absorption.


2021 ◽  
Vol 11 (8) ◽  
pp. 3466
Author(s):  
Lulu Liu ◽  
Shikai Yin ◽  
Gang Luo ◽  
Zhenhua Zhao ◽  
Wei Chen

Two-dimensional (2D) triaxial braided composites with braiding angle (± 60°/0°) have been used as aero-engine containing casing material. In the current paper, three types of projectile with the same mass and equivalent diameter, including cylinder gelatin projectile, carbon fiber-reinforced plastics (CFRP), and titanium alloy blade-like projectile, were employed to impact on triaxial braided composites panels with thickness of 4.3 mm at room temperature (20 °C) to figure out the influences of projectile materials on the damage pattern and energy absorption behavior. Furthermore, the influences of environmental temperature were also discussed considering the aviation service condition by conducting ballistic impact tests using CFRP projectile at cryogenic temperature (−50 °C) and high temperature (150 °C). The triaxial braided target panel were pre-heated or cooled in a low-temperature chamber before mounted. It is found that soft gelatin project mainly causes global deformation of the target and therefore absorb much more energy. The triaxial braided composite absorb 77.59% more energy when impacted with CFRP projectile than that with titanium alloy projectile, which mainly results in shear fracture. The environmental temperature has influences on the damage pattern and energy absorption of triaxial braided composites. The cryogenic temperature deteriorates the impact resistance of the triaxial braided composite material with matrix cracking damage pattern, while high temperature condition improves its impact resistance with shearing fracture damage pattern.


2016 ◽  
Vol 835 ◽  
pp. 649-653
Author(s):  
Yuan Yuan Ding ◽  
Shi Long Wang ◽  
Zhi Jun Zheng ◽  
Li Ming Yang ◽  
Ji Lin Yu

A 3D cell-based finite element model is employed to investigate the dynamic biaxial behavior of cellular materials under combined shear-compression. The biaxial behavior is characterized by the normal stress and shear stress, which could be determined directly from the finite element results. A crush plateau stress is introduced to illustrate the critical crush stress, and the result shows that the normal plateau stress declines with the increase of the shear plateau stress, which climbs with the increase of loading angle. An elliptical criterion of normal plateau stress vs. shear plateau stress is obtained by the nonlinear regression method.


2011 ◽  
Vol 13 (11) ◽  
pp. 1042-1049 ◽  
Author(s):  
Volker Presser ◽  
Stefanie Schultheiß ◽  
Christian Kohler ◽  
Christoph Berthold ◽  
Klaus G. Nickel ◽  
...  

1989 ◽  
Vol 34 (4) ◽  
pp. 305-335 ◽  
Author(s):  
B.Z. Jang ◽  
L.C. Chen ◽  
C.Z. Wang ◽  
H.T. Lin ◽  
R.H. Zee

2012 ◽  
Vol 585 ◽  
pp. 34-38 ◽  
Author(s):  
Manmohan Dass Goel ◽  
Laxminarayan Krishnappa

Modeling and numerical simulation of aluminum foam filled square tubes under axial impact loading is presented. The foam-filled thin-walled square tubes are modeled as shell wherein, foam core is modeled by incorporating visco-elastic plastic foam model in Altair® RADIOSS. Deformation and energy absorption studies with single, bi-tubular, and multi-tube structure with and without aluminum foam core are carried out for assessing its effectiveness in crashworthiness under the identical conditions. It is observed that the multi-tube structure with foam core modify the deformation modes considerably and results in substantial increase in energy absorption capacity in comparison with the single and multi-tube without foam core. Moreover, the multi-tube foam filled structure shows complicated deformation modes due to the significant effect of stress wave propagation. This study will help automotive industry to design superior crashworthy components with multi-tube foam filled structures and will reduce the experimental trials by conducting the numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document