scholarly journals Effect of Fatigue Damage on Energy Absorption Properties of Honeycomb Paperboard

2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Zhi-geng Fan ◽  
Li-xin Lu ◽  
Jun Wang

The effect of fatigue damage (FD) on the energy absorption properties of precompressed honeycomb paperboard is investigated by fatigue compression experiments. The constitutive relations of honeycomb paperboard have been changed after the fatigue damage. The results show that FD has effect on plateau stress and energy absorption capacity of honeycomb paperboard after fatigue cycles but has no significant effect on densification strain. Energy absorption diagram based on the effect of FD is constructed from the stress-strain curves obtained after fatigue compression experiments. FD is a significant consideration for honeycomb paperboard after transports. The results of this paper could be used for optimization design of packaging materials.

2012 ◽  
Vol 200 ◽  
pp. 155-159 ◽  
Author(s):  
Yu Ping E

The effect of relative humidity (RH) on the energy absorption characteristics of honeycomb paperboard and multi-layered corrugated paperboard (MLCP) is investigated experimentally. The concept of specific load is employed to compare the energy absorption properties of these two structural parts with different constructions and materials. Results indicate that energy absorption capacity of honeycomb paperboard is insensitive to RH in the range of 40%~75%; when RH is higher than 75%, energy absorption decreased significantly with the increasing of RH. While for MLCP, its energy absorption properties decline continually by small margin as the RH increase in relative humidity range between 40%-95%. Energy absorption properties of honeycomb paperboard far outweigh that of MLCP in humidity range of 40%-85%, however, in extremely humid environment (95%RH), energy absorption of honeycomb paperboard is nearly equal to that of MLCP. Results of this research can be applied in the optimum design and material selection of paper-based cushioning materials in actual logistics environments.


2014 ◽  
Vol 552 ◽  
pp. 308-314
Author(s):  
Fei Xiang Yang ◽  
Chao Qun Zhu ◽  
Jun Jie Zhao ◽  
Yan Lin He ◽  
Lin Li

In this paper, the energy absorption properties of 600 MPa and 800MPa grade TRIP and DP steels under different strain rates were investigated. It was shown that the deformation of dynamic specimens concentrated in parallel section under quasi-static stretching, and the strain rate had nothing to do with the energy absorption of these four steel. In the dynamic tension, the TRIP steel had a better energy absorption capacity than it in the quasi-static condition. However, the energy absorption properties of DP steel were not the case. And with the increasing of the strain rate, the energy absorption of these four steel decreased. It was because that instead of “gradual transition”, the transformation of retained austenite changed to “instantaneous transition” in dynamic tension. It made the energy absorption become smaller than it in static tension. Meanwhile, the ductility and the energy absorption capacity of the DP steel were improved, which effected by the adiabatic temperature rise. Owing to suppression of plastic deformation of these steel in dynamic tension, the energy absorption capacity of these four steel decreased with the increasing of strain rate.


2011 ◽  
Vol 462-463 ◽  
pp. 13-17 ◽  
Author(s):  
Yan Wang ◽  
P. Xue ◽  
J.P. Wang

Honeycomb materials,as a type of ultra-light multifunctional material,have been examined extensively in recent years and have been applied in many fields. This study investigated the energy absorption capacity and their mechanisms of honeycomb structures with five different cell geometry (square,triangular,circular, hexagonal,kagome). It has been shown that the honeycomb structure with kagome cells is the best choice under the targets of the energy absorption capacity, peak force and plateau stress, when relative density and cell wall thickness of the five kinds of honeycombs are the same. Besides, honeycomb with hexagonal cells and honeycomb with triangular cells are also ideal structures for energy absorption purpose.


2015 ◽  
Vol 1115 ◽  
pp. 288-291
Author(s):  
Perowansa Paruka ◽  
Mohd Hafizil Mat Yasin ◽  
Rizalman Mamat ◽  
Md Abdul Maleque ◽  
Md Kamal Md Shah

This paper presents an experimental work on the influence of number of layers in the overwrap hybrid composite columnars under repeated axial crush force. The columnar test specimens were fabricated by hand lay–up process using commercial available of 0/90° ply oriented epoxy-glass fiber mats. In determining the energy absorption capacity, three different columnar tubes were prepared using one-layer, two-layers and three-layers in order to determine the utilize of such fibers in structural automotive applications. Quasi-static crush test for these tubes was carried out using Instron machine with axial loading. Results showed that the axial crush force and the numbers of layers influenced the level of energy absorption before structures collapse. It is found that the initial peak crush force, mean crush force, crush force efficiency and energy absorption properties of the collapsed hybrid composite columnars were increased by adding of layers in the overwrap thickness.


2021 ◽  
Author(s):  
Yonghui Wang ◽  
Qiang He ◽  
Yu Chen ◽  
Hang Gu ◽  
Honggen Zhou

Abstract In order to seek higher crashworthiness and energy absorption capacity, based on biological inspiration, a novel bio-inspired re-entrant honeycomb (BRH) structure with negative Poisson's ratio is designed by selecting lotus leaf vein as biological prototype. The numerical simulation model is established by the nonlinear dynamics software ABAQUS and further compared with the available reference results to verify the feasibility. The dynamic compression behavior and energy absorption capacity of two types of BRH (BRH-Ⅰ and BRH-Ⅱ) are firstly compared with conventional re-entrant honeycomb (RH). The simulation results show that BRH have better mechanical properties and energy absorption characteristics. Then, the crushing behavior of BRH-Ⅱ under different impact velocities are systematically studied. Three typical deformation modes of BRH-Ⅱ are observed through the analysis of deformation profile. The quasi-static plateau stress is closely related to the cellular structure. Based on one-dimensional shock theory, the empirical equations of dynamic plateau stress for BRH-Ⅱ with different relative densities are given by using least-square fitting. In addition, the effects of impact velocity and relative density on plateau stress and energy absorption behavior are also studied. The results show that the energy absorption capacity of BRH-Ⅱ is increased nearly six times compared with RH at the same impact velocity.


Author(s):  
H Geramizadeh ◽  
S Dariushi ◽  
S Jedari Salami

The current study focuses on designing the optimal three-dimensional printed sandwich structures. The main goal is to improve the energy absorption capacity of the out-of-plane honeycomb sandwich beam. The novel Beta VI and Alpha VI were designed in order to achieve this aim. In the Beta VI, the connecting curves (splines) were used instead of the four diagonal walls, while the two vertical walls remained unchanged. The Alpha VI is a step forward on the Beta VI, which was promoted by filleting all angles among the vertical walls, created arcs, and face sheets. The two offered sandwich structures have not hitherto been provided in the literature. All models were designed and simulated by the CATIA and ABAQUS, respectively. The three-dimensional printer fabricated the samples by fused deposition modeling technique. The material properties were determined under tensile, compression, and three-point bending tests. The results are carried out by two methods based on experimental tests and finite element analyses that confirmed each other. The achievements provide novel insights into the determination of the adequate number of unit cells and demonstrate the energy absorption capacity of the Beta VI and Alpha VI are 23.7% and 53.9%, respectively, higher than the out-of-plane honeycomb sandwich structures.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
S. Talebi ◽  
R. Hedayati ◽  
M. Sadighi

AbstractClosed-cell metal foams are cellular solids that show unique properties such as high strength to weight ratio, high energy absorption capacity, and low thermal conductivity. Due to being computation and cost effective, modeling the behavior of closed-cell foams using regular unit cells has attracted a lot of attention in this regard. Recent developments in additive manufacturing techniques which have made the production of rationally designed porous structures feasible has also contributed to recent increasing interest in studying the mechanical behavior of regular lattice structures. In this study, five different topologies namely Kelvin, Weaire–Phelan, rhombicuboctahedron, octahedral, and truncated cube are considered for constructing lattice structures. The effects of foam density and impact velocity on the stress–strain curves, first peak stress, and energy absorption capacity are investigated. The results showed that unit cell topology has a very significant effect on the stiffness, first peak stress, failure mode, and energy absorption capacity. Among all the unit cell types, the Kelvin unit cell demonstrated the most similar behavior to experimental test results. The Weaire–Phelan unit cell, while showing promising results in low and medium densities, demonstrated unstable behavior at high impact velocity. The lattice structures with high fractions of vertical walls (truncated cube and rhombicuboctahedron) showed higher stiffness and first peak stress values as compared to lattice structures with high ratio of oblique walls (Weaire–Phelan and Kelvin). However, as for the energy absorption capacity, other factors were important. The lattice structures with high cell wall surface area had higher energy absorption capacities as compared to lattice structures with low surface area. The results of this study are not only beneficial in determining the proper unit cell type in numerical modeling of dynamic behavior of closed-cell foams, but they are also advantageous in studying the dynamic behavior of additively manufactured lattice structures with different topologies.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Przemysław Rumianek ◽  
Tomasz Dobosz ◽  
Radosław Nowak ◽  
Piotr Dziewit ◽  
Andrzej Aromiński

Closed-cell expanded polypropylene (EPP) foam is commonly used in car bumpers for the purpose of absorbing energy impacts. Characterization of the foam’s mechanical properties at varying strain rates is essential for selecting the proper material used as a protective structure in dynamic loading application. The aim of the study was to investigate the influence of loading strain rate, material density, and microstructure on compressive strength and energy absorption capacity for closed-cell polymeric foams. We performed quasi-static compressive strength tests with strain rates in the range of 0.2 to 25 mm/s, using a hydraulically controlled material testing system (MTS) for different foam densities in the range 20 g/dm3 to 220 g/dm3. The above tests were carried out as numerical simulation using ABAQUS software. The verification of the properties was carried out on the basis of experimental tests and simulations performed using the finite element method. The method of modelling the structure of the tested sample has an impact on the stress values. Experimental tests were performed for various loads and at various initial temperatures of the tested sample. We found that increasing both the strain rate of loading and foam density raised the compressive strength and energy absorption capacity. Increasing the ambient and tested sample temperature caused a decrease in compressive strength and energy absorption capacity. For the same foam density, differences in foam microstructures were causing differences in strength and energy absorption capacity when testing at the same loading strain rate. To sum up, tuning the microstructure of foams could be used to acquire desired global materials properties. Precise material description extends the possibility of using EPP foams in various applications.


2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


Sign in / Sign up

Export Citation Format

Share Document