scholarly journals Basics for performing a high-quality color Doppler sonography of the vascular access

2021 ◽  
pp. 112972982110180
Author(s):  
Mario Meola ◽  
Jose Ibeas ◽  
Gianfranco Lasalle ◽  
Ilaria Petrucci

In the last years, the systematic use of ultrasound mapping of the upper limb vascular network before the arteriovenous fistula (AVF) implantation, access maturation, and clinical management of late complications is widespread and expanding. Therefore, a good knowledge of theoretical outlines, instrumentation, and operative settings is undoubtedly required for a thorough examination. In this review, the essential Doppler parameters, B-Mode setting, and Doppler applications are considered. Basic concepts on the Doppler shift equation, angle correction, settings on pulse repetition frequency, operative Doppler frequency, gain are reported to ensure adequate and correct sampling of blood flow velocity. A brief analysis of the Doppler inherent artefacts (as random noise, blooming, aliasing, and motion artefacts) and the adjustment setting to minimize or eliminate the confounding artefacts are also considered. Doppler aliasing occurs when the pulse repetition frequency is set too low. This artefact is particularly frequent in vascular access sampling due to the high velocities range registered in the fistula’s different segments. Aliasing should be recognized because its correction is crucial to analyse the Doppler signals correctly. Recent advances in instrumentation are also considered about a potential purchase of a portable ultrasound machine or a top-of-line, high-end, or mid-range ultrasound system. Last, the pulse wave Doppler setting for vascular access B-Mode and Doppler assessment is summarized.

1996 ◽  
Vol 12 (4) ◽  
pp. 257-261 ◽  
Author(s):  
Martin Giesler ◽  
Veit Göller ◽  
Alexander Pfob ◽  
Dionyz Bajtay ◽  
Matthias Kochs ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ming Long ◽  
Jun Yang ◽  
Saiqiang Xia ◽  
Mingjiu Lv ◽  
Xu Wei ◽  
...  

In order to resolute the micro-Doppler frequency ambiguity caused by radar pulse repetition frequency not high enough (i.e., pulse dimension does not satisfy the requirement of Nyquist sampling theorem), this paper presents a micro-Doppler frequency ambiguity resolution method based on complex-valued U-net. The echo sequence is interpolated by zeros in the pulse dimension to increase the equivalent pulse repetition frequency, so that the echo sequence after zero interpolation contains the real micro-Doppler frequency; at the same time, some new frequency components are generated. The variation law of the echo sequence frequency after zero interpolation is analyzed. Then, the echo sequence in time domain after zero interpolation is transformed to the time-frequency domain by short-time Fourier transform (STFT). Finally, the time-frequency results can be segmented by the model, which is trained by complex-valued U-net to eliminate the redundant frequencies generated by zero interpolation; thus, the reconstruction of real micro-Doppler frequency is realized. Theoretical analysis and simulation results show that the proposed method can solve the problem of micro-Doppler frequency ambiguity. Compared with fully convolution network (FCN) and fully convolution residual network (FCRN), the proposed method has better performance and robustness.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5040
Author(s):  
Silvia Ronda Peñacoba ◽  
Mar Fernández Gutiérrez ◽  
Julio San Román del Barrio ◽  
Francisco Montero de Espinosa

Despite the use of therapeutic ultrasound in the treatment of soft tissue pathologies, there remains some controversy regarding its efficacy. In order to develop new treatment protocols, it is a common practice to carry out in vitro studies in cell cultures before conducting animal tests. The lack of reproducibility of the experimental results observed in the literature concerning in vitro experiments motivated us to establish a methodology for characterizing the acoustic field in culture plate wells. In this work, such acoustic fields are fully characterized in a real experimental configuration, with the transducer being placed in contact with the surface of a standard 12-well culture plate. To study the non-thermal effects of ultrasound on fibroblasts, two different treatment protocols are proposed: long pulse (200 cycles) signals, which give rise to a standing wave in the well with the presence of cavitation (ISPTP max = 19.25 W/cm2), and a short pulse (five cycles) of high acoustic pressure, which produces a number of echoes in the cavity (ISPTP = 33.1 W/cm2, with Pmax = 1.01 MPa). The influence of the acoustic intensity, the number of pulses, and the pulse repetition frequency was studied. We further analyzed the correlation of these acoustic parameters with cell viability, population, occupied surface, and cell morphology. Lytic effects when cavitation was present, as well as mechanotransduction reactions, were observed.


Author(s):  
Iakov Kornev ◽  
Sergei Preis

AbstractWastewaters polluted with non-biodegradable volatile organic compounds (VOCs), such as aromatic substances, present a growing problem meeting no adequately affordable technological response. Low-temperature plasma generated in the gas-phase pulsed corona discharge (PCD) presents competitive advanced oxidation technology in abatement of various classes of pollutants, although the process parameters, the pulse repetition frequency and the liquid spray rate, require optimization. The experimental research into aqueous benzene oxidation with PCD was undertaken to establish the impact of the parameters to the energy efficiency. The oxidation reaction was found under the experimental conditions to mostly proceed in the gas phase showing little influence of the pulse repetition frequency and the gas-liquid contact surface. Oxidation of benzene and, presumably, other volatile pollutants in the volume of PCD reactor compartment presents an effective strategy of aqueous VOCs abatement.


2006 ◽  
Vol 6 (4) ◽  
pp. 906-915 ◽  
Author(s):  
M. Kupnik ◽  
A. Schroder ◽  
P. O'Leary ◽  
E. Benes ◽  
M. Groschl

Sign in / Sign up

Export Citation Format

Share Document