scholarly journals Supply–Demand of Water Resource of a Basin With High Anthropic Pressure: Case Study Quenane-Quenanito Basin in Colombia

2020 ◽  
Vol 13 ◽  
pp. 117862212091772 ◽  
Author(s):  
Oscar I Vargas-Pineda ◽  
Juan M Trujillo-González ◽  
Marco A Torres-Mora

Water scarcity has increased in the last century due to the effects of climate change and the over-exploitation of anthropic activities that deteriorate strategic ecosystems in watersheds. This study quantified the water consumption of anthropic activities according to the water footprint (WF) and the water supply available (WSA) using the GR2M hydrological simulation model in the Quenane-Quenanito basin in Colombia. The objective of this study was to analyze the dynamic supply–demand of water and identify potential conflicts associated with the use of water. The results of this study show that the WF of the basin was 17.01 million m3/year, 79.97% of which was the green WF and 20.03% of which was the blue WF, and that the WSA of the basin was 272.1 million m3/year. In addition, potential conflicts over the use of water were identified due to water scarcity in 11 sub-basins during the months of January to March. In conclusion, analyzing the demand and supply of water in basins and taking into account their spatiotemporal distribution allows us to measure the impacts of anthropic activities on water resources, which can prevent potential conflicts associated with the use of water between sectors or the involvement of ecological dynamics.

2022 ◽  
Vol 82 ◽  
Author(s):  
C. Yerli ◽  
U. Sahin

Abstract Today, most of the world’s population faces water scarcity, while global warming, urbanization, industrialization and population increases continue to increase the severity of the pressure on water resources. Management of water resources plays a key role in the sustainability of agricultural production. The water footprint (WF) is different in comparison to other water statistics because it takes direct and indirect water consumption into account, and helps in the management of water resources. Within this context, the WF of Van province, which is Turkey’s most easterly located arid region, was calculated from 2004 to 2019. The study area covers lake Van, which is Turkey's largest lake, and the Van basin with an area of 23.334 km2 and a population of 1.136.757 (2019). In the calculations, crop (WFcrop), livestock (WFlivestock), and domestic and industrial water footprints (WFdomestic+industrial) were evaluated separately, and blue and green water footprints (WFblue and WFgreen) were analyzed in detail. According to the results, the average WF of Van province was found to be 8.73 billion m3 year-1. Throughout the province, 87.6% of the WF is composed of WFcrop, 4.9% is WFlivestock and 7.5% is WFdomestic+industrial. Of the WFcrop, 62.5% depends on WFblue, i.e., freshwater. Most of the WFlivestock consisted of dairy cattle (49%) and sheep (38%). The average WFdomestic+industrial for 2004 to 2019 was 0.64 billion m3 year-1. The average per capita water footprint of Van province was found to be 889.9 m3 year-1 capita-1. In addition, the province is classified as severe water scarcity (257%). This study is one of the first province-based calculations of WF in Turkey and is the first study to bring a different aspect to published literature by including residual soil moisture from the winter months. As a result of this study, the WFblue of the WFcrop is above the worldwide average and should be reduced by changing the crop pattern or synchronizing the planting and harvest dates of the crops to a period that benefits from precipitation. In addition, this study is expected to contribute to new studies for calculating the provincial scale WF and will have positive effects on agricultural planning, water allocation and the sustainability of water resources.


Author(s):  
R. Quentin Grafton ◽  
Long Chu ◽  
Paul Wyrwoll

Water insecurity poses threats to both human welfare and ecological systems. Global water abstractions (extractions) have increased threefold over the period 1960–2010, and an increasing trend in abstractions is expected to continue. Rising water use is placing significant pressure on water resources, leading to depletion of surface and underground water systems, and exposing up to 4 billion people to high levels of seasonal or persistent water insecurity. Climate change is deepening the risks of water scarcity by increasing rainfall variability. By the 2050s, the water–climate change challenge could cause an additional 620 million people to live with chronic water shortage and increase by 75% the proportion of cropland exposed to drought. While there is no single solution to water scarcity or water justice, increasing the benefits of water use through better planning and incentives can help. Pricing is an effective tool to regulate water consumption for irrigation, for residential uses, and especially in response to droughts. For a water allocation to be efficient, the water price paid by users should be equal to the marginal economic cost of water supply. Accounting for all costs of supply is important even though, in practice, water prices are typically set to meet a range of social and political objectives. Dynamic water pricing provides a tool for increasing allocative efficiency in short-term water allocation and the long-term planning of water resources. A dynamic relationship exists between water consumption at a point in time and water scarcity in the future. Thus, dynamic water pricing schemes may take into account the benefit of consuming water at that time and also the water availability that could be used should a drought occur in the future. Dynamic water pricing can be applied with the risk-adjusted user cost (RAUC), which measures the risk impact of current water consumption on the welfare of future water users.


Author(s):  
Denise Slater

Between 2012 and 2015, Brazil experienced one of the worst droughts in its history. A combination of natural and human-made causes—including climate change, environmental degradation, poor urban planning, a lack of maintenance of existing infrastructure, corruption, and the mismanagement of water resources—contributed to a growing water crisis. This article will focus on the effects of both the drought and the subsequent water crisis on the vast metropolitan area of the city of São Paulo, illustrating how both natural and human factors combined to create a crisis in Brazil’s largest city.


2021 ◽  
pp. 096466392110316
Author(s):  
Chloé Nicolas-Artero

This article shows how geo-legal devices created to deal with environmental crisis situations make access to drinking water precarious and contribute to the overexploitation and contamination of water resources. It relies on qualitative methods (interviews, observations, archive work) to identify and analyse two geo-legal devices applied in the case study of the Elqui Valley in Chile. The first device, generated by the Declaration of Water Scarcity, allows private sanitation companies to concentrate water rights and extend their supply network, thus producing an overexploitation of water resources. In the context of mining pollution, the second device is structured around the implementation of the Rural Drinking Water Programme and the distribution of water by tankers, which has made access to drinking water more precarious for the population and does nothing to prevent pollution.


2018 ◽  
Vol 10 (10) ◽  
pp. 3556 ◽  
Author(s):  
Gang Liu ◽  
Lu Shi ◽  
Kevin Li

This paper develops a lexicographic optimization model to allocate agricultural and non-agricultural water footprints by using the land area as the influencing factor. An index known as the water-footprint-land density (WFLD) index is then put forward to assess the impact and equity of the resulting allocation scheme. Subsequently, the proposed model is applied to a case study allocating water resources for the 11 provinces and municipalities in the Yangtze River Economic Belt (YREB). The objective is to achieve equitable spatial allocation of water resources from a water footprint perspective. Based on the statistical data in 2013, this approach starts with a proper accounting for water footprints in the 11 YREB provinces. We then determined an optimal allocation of water footprints by using the proposed lexicographic optimization approach from a land area angle. Lastly, we analyzed how different types of land uses contribute to allocation equity and we discuss policy changes to implement the optimal allocation schemes in the YREB. Analytical results show that: (1) the optimized agricultural and non-agricultural water footprints decrease from the current levels for each province across the YREB, but this decrease shows a heterogeneous pattern; (2) the WFLD of 11 YREB provinces all decline after optimization with the largest decline in Shanghai and the smallest decline in Sichuan; and (3) the impact of agricultural land on the allocation of agricultural water footprints is mainly reflected in the land use structure of three land types including arable land, forest land, and grassland. The different land use structures in the upstream, midstream, and downstream regions lead to the spatial heterogeneity of the optimized agricultural water footprints in the three YREB segments; (4) In addition to the non-agricultural land area, different regional industrial structures are the main reason for the spatial heterogeneity of the optimized non-agricultural water footprints. Our water-footprint-based optimal water resources allocation scheme helps alleviate the water resources shortage pressure and achieve coordinated and balanced development in the YREB.


2020 ◽  
Vol 12 (22) ◽  
pp. 9678
Author(s):  
Aihua Long ◽  
Pei Zhang ◽  
Yang Hai ◽  
Xiaoya Deng ◽  
Junfeng Li ◽  
...  

Scientifically determining agricultural water consumption is fundamental to the optimum allocation and regulation of regional water resources. However, traditional statistical methods used for determining agricultural water consumption in China do not reflect the actual use of water resources. This paper determined the variation in the crop water footprint (CWF) to reflect the actual agricultural water consumption in Xinjiang, China, during the past 30 years, and the data from 15 crops were included. In addition, the STIRPAT (stochastic impacts by regression on population, affluence and technology) model was used to determine the factors influencing the CWF. The results showed that the CWF in Xinjiang increased by 256% during the 30-year period. Factors such as population, agricultural added value, and effective irrigated area were correlated with an increase in the CWF. This study also showed that the implementation of national and regional policies significantly accelerated the expansion of agricultural production areas and increased the amount of agricultural water used. The objectives of this paper were to identify the factors influencing the CWF, give a new perspective for further analysis of the relationship between agricultural growth and water resources utilization, and provide a reference for local policy decision-makers in Xinjiang.


2019 ◽  
Vol 696 ◽  
pp. 134024 ◽  
Author(s):  
Paula Quinteiro ◽  
Sandra Rafael ◽  
Bruno Vicente ◽  
Martinho Marta-Almeida ◽  
Alfredo Rocha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document