scholarly journals Do Bioflavonoids in Juniperus virginiana Heartwood Stimulate Oviposition in the Ladybird Coleomegilla maculata?

2018 ◽  
Vol 10 ◽  
pp. 117954331875840 ◽  
Author(s):  
Eric W Riddick ◽  
Zhixin Wu ◽  
Fred J Eller ◽  
Mark A Berhow

Maximizing the reproductive potential of ladybird beetles fed factitious foods or artificial diets, in lieu of natural prey, is a major challenge to cost-effective mass rearing for augmentative biological control. In this study, we tested the hypothesis that compounds in redcedar, Juniperus virginiana, stimulate oviposition in the ladybird Coleomegilla maculata. We also tested the prediction that several bioflavonoids, identified in heartwood fractions, elicited this behavioral response. Phenolic compounds were extracted from J. virginiana heartwood sawdust, separated into several fractions, then presented to adult beetles, in a powdered, pure form, in the laboratory. Females preferentially oviposited within 1 to 2 cm of fractions B, C, D, and E, but not A or the unfractionated extract, at the base of test cages. Chemical analysis identified bioflavonoids in heartwood fractions and subsequent bioassays using several identified in fractions C, D, and E confirmed that quercetin, taxifolin, and naringenin (to a lesser extent) stimulated oviposition. All tested fractions and bioflavonoids readily adhered to the chorion of freshly laid eggs but did not reduce egg hatch. This study demonstrates that several bioflavonoids stimulate oviposition by C. maculata and could be useful for mass rearing programs.

2020 ◽  
Vol 21 ◽  
pp. 00018
Author(s):  
Natalia Belyakova ◽  
Yulia Polikarpova

Based on the reconsideration of traditional criteria for assessing the efficacy of natural enemies, the screening of coccinellids for preventative control of aphids was conducted. The result suggests that there is no causation between the female size (weight) and the reproductive potential of the tested species. Considering that size does not matter in preventative releases, it is more cost-effective to produce small lady beetles. Essential and non-essential ecological knowledge for the efficacy assessment is discussed.


2020 ◽  
Vol 113 (6) ◽  
pp. 2613-2618
Author(s):  
Kinjo Misa ◽  
Chihiro Himuro ◽  
Atsushi Honma ◽  
Yusuke Ikegawa ◽  
Tsuyoshi Ohishi

Abstract Artificial diets have been employed for the mass-rearing of numerous insects because of their ease of use and standardized quality. An ability to store artificial diets under nonrefrigerated conditions over the long term could improve the efficacy of mass-rearing systems considerably. However, it remains largely unknown how long artificial diets can be stored at such temperatures without any adverse effects on the insects reared. In this study, we investigated yield, body size, and reproductive potential of West Indian sweet potato weevil, Euscepes postfasciatus (Fairmaire), which is a major sweet potato pest, under management using the sterile-insect technique in Japan and reared using artificial diets with different storage periods (14, 28, and 42 d) at nonrefrigerated temperatures (25 ± 1°C), and compared them with those of the control (0 d). Notably, E. postfasciatus yield and reproductive potential increased significantly with an increase in storage period (28 and 42 d). Conversely, male body size decreased significantly following feeding with artificial diet stored for 42 d, when compared with the control, while there were no significant differences in female body size between the control and all the treatments. We discuss the potential causes of such varying effects between yield and body size and conclude that E. postfasciatus artificial diet can be stored for at least 28 d without any adverse effects on weevil yield and weevil quality. To the best of our knowledge, this is the first report revealing the positive effects of long-term storage of the artificial diet on mass-reared insects.


2018 ◽  
Vol 111 (4) ◽  
pp. 1605-1613 ◽  
Author(s):  
Rafael Hayashida ◽  
Adeney de Freitas Bueno ◽  
Amanda Oliveira Hermel ◽  
Marcelo Hiroshi Hirakuri ◽  
Flávia Augusta Cloclet Silva ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana P. G. S. Wengrat ◽  
Aloisio Coelho Junior ◽  
Jose R. P. Parra ◽  
Tamara A. Takahashi ◽  
Luis A. Foerster ◽  
...  

AbstractThe egg parasitoid Telenomus remus (Hymenoptera: Scelionidae) has been investigated for classical and applied biological control of noctuid pests, especially Spodoptera (Lepidoptera: Noctuidae) species. Although T. remus was introduced into Brazil over three decades ago for classical biological control of S. frugiperda, this wasp has not been recorded as established in corn or soybean crops. We used an integrative approach to identify T. remus, combining a taxonomic key based on the male genitalia with DNA barcoding, using a cytochrome c oxidase subunit I mitochondrial gene fragment. This is the first report of natural parasitism of T. remus on S. frugiperda and S. cosmioides eggs at two locations in Brazil. We also confirmed that the T. remus lineage in Brazil derives from a strain in Venezuela (originally from Papua New Guinea and introduced into the Americas, Africa, and Asia). The occurrence of T. remus parasitizing S. frugiperda and S. cosmioides eggs in field conditions, not associated with inundative releases, suggests that the species has managed to establish itself in the field in Brazil. This opens possibilities for future biological control programs, since T. remus shows good potential for mass rearing and egg parasitism of important agricultural pests such as Spodoptera species.


1970 ◽  
Vol 102 (12) ◽  
pp. 1554-1558 ◽  
Author(s):  
W. R. Allen ◽  
W. L. Askew

AbstractA gelatine-based diet for rearing the onion maggot, Hylemya antiqua (Meigen), that contains sucrose, evaporated milk, yeast hydrolysate, wheat embryo, cellulose powder, n-propyl disulfide, water, and antibiotics is described. Three consecutive generations reared on this medium were equal in puparial weights, percentages of pupation, adult emergence, and egg hatch, to those reared on onion bulbs. The procedure is simple and two man-hours per week is sufficient for producing 1000 maggots daily.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 140 ◽  
Author(s):  
Véronique Paris ◽  
Ellen Cottingham ◽  
Perran Ross ◽  
Jason Axford ◽  
Ary Hoffmann

Wolbachia bacteria have been identified as a tool for reducing the transmission of arboviruses transmitted by Aedes aegypti. Research groups around the world are now mass rearing Wolbachia-infected Ae. aegypti for deliberate release. We investigated the fitness impact of a crucial element of mass rearing: the blood meal required by female Ae. aegypti to lay eggs. Although Ae. aegypti almost exclusively feed on human blood, it is often difficult to use human blood in disease-endemic settings. When females were fed on sheep or pig blood rather than human blood, egg hatch rates decreased in all three lines tested (uninfected, or infected by wMel, or wAlbB Wolbachia). This finding was particularly pronounced when fed on sheep blood, although fecundity was not affected. Some of these effects persisted after an additional generation on human blood. Attempts to keep populations on sheep and pig blood sources only partly succeeded, suggesting that strong adaptation is required to develop a stably infected line on an alternative blood source. There was a decrease in Wolbachia density when Ae. aegypti were fed on non-human blood sources. Density increased in lines kept for multiple generations on the alternate sources but was still reduced relative to lines kept on human blood. These findings suggest that sheep and pig blood will entail a cost when used for maintaining Wolbachia-infected Ae. aegypti. These costs should be taken into account when planning mass release programs.


1979 ◽  
Vol 111 (5) ◽  
pp. 551-556 ◽  
Author(s):  
T.R. Burkot ◽  
D.M. Benjamin

AbstractAdults and larvae of the cottonwood leaf beetle, Chrysomela scripta Fab., defoliated tissue cultured Aigeiros (Populus × euramericana (Dode) Guinier) subclones and destroyed apical tips. Fecundity was 510 ± 153 eggs . Four generations occurred between May and September in southern Wisconsin. Maximal insect numbers and damage occurred in the third generation. The minimal developmental threshold was 10.8 °C with a mean 257 ± 26 day-degree (°C) required per generation. Important biological control agents included Coleomegilla maculata, which consumed up to 25% of the eggs, and Shizonatus latus, a pteromalid parasite, which destroyed up to 26% of the pupae.


Author(s):  
John A. Goolsby ◽  
Matthew A. Ciomperlik ◽  
Gregory S. Simmons ◽  
Charles J. Pickett ◽  
Juli A. Gould ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document