Influence of granularity of grinding stone on grinding force and material removal in the rail grinding process

Author(s):  
Wen-jian Wang ◽  
Kai-kai Gu ◽  
Kun Zhou ◽  
Zhen-bing Cai ◽  
Jun Guo ◽  
...  

The objective of this study is to explore the influence of grinding stone granularity on the grinding force and rail material removal behaviors using a rail grinding friction machine. The results indicate that with the increase in granularity, the grinding force, and friction coefficient in the grinding interface obviously increase, which brings about a rise in the hardness and grinding temperature-rise of rail specimens. The increase in the grinding stone granularity causes a fall in the grinding volume and surface roughness of rail materials and brings about stronger vibration in the grinding interface owing to different material removal mechanisms. In view of the experimental results, the optimization of grinding stone granularity is significant for improving the rail grinding efficiency and surface quality.

2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2293 ◽  
Author(s):  
Shuyue Zhang ◽  
Kun Zhou ◽  
Haohao Ding ◽  
Jun Guo ◽  
Qiyue Liu ◽  
...  

A three-dimensional finite element model of rail grinding was established to explore the effects of grinding passes and grinding direction on the material removal behaviour of grinding rails during the grinding process. The results indicate that as the number of grinding passes increases, a decrease in the grinding force reduces both the amount of removed rail material and the surface roughness. There is a decrease in the grinding ratio caused by the increase in the wear on the grinding wheel and the decreased removal of the rail material. When the grinding direction changes, the wear of the grinding wheel decreases, which is contrary to the increasing trend of the amount of removed rail material, the grinding ratio, the surface roughness and the grinding force.


2020 ◽  
Vol 10 (18) ◽  
pp. 6314
Author(s):  
Fengping Li ◽  
Yao Xue ◽  
Zhengya Zhang ◽  
Wenlei Song ◽  
Jiawei Xiang

Surface roughness and the material removal rate (MRR) are two important indicators during the grinding process. The former determines the surface quality while the latter reflects the grinding efficiency directly. In this paper, the two indicators are taken into consideration simultaneously and differently by converting them into a comprehensive goal with using weighting objective method. A prediction model was established for each comprehensive goal with each different combination of surface roughness and MRR weighting coefficient. The optimal value of abrasive size, contact force, belt linear speed, and feed speed were obtained under different grinding situations by using a central composite design (CCD) combined with response surface analysis. The experimental results showed that the comprehensive goal can be used effectively as an indicator to control the grinding performance and improve the optimization process.


Author(s):  
Jun-chen Li ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Xiao-fen Liu ◽  
Huang Bo ◽  
...  

Abstract The IC10 superalloy material is one of the most important materials for aero-engine turbine blade due to its excellent performances. However, it is difficult to be machined because of its special properties such as terrible tool wear and low machined efficiency. The creep feed grinding is widely used in machining IC10 superalloy due to the advance in reducing tool wear, improving material removal rate and surface quality. The creep feed grinding is a promising machining process with the advantages of high material removal rate due to large cutting depth, long cutting arc and very slow workpiece, and its predominant features might have significant influence on the grinding force and surface quality for the workpiece. Hence, it is of great importance to study the grinding force and surface integrity in creep feed grinding IC10 superalloy. In this paper, a series of orthogonal experiments have been carried out and the effects of grinding parameters on the grinding force and the surface roughness are analyzed. The topographies and defects of the machined surface were observed and analyzed using SEM. The results of the experiments show that the tangential force is decreased with the workpiece speed increasing. However, there is no significant change in tangential force with the increasing of grinding depth and wheel speed. The normal force is decreased with the workpiece speed increasing when the workpiece speed is less than 150 mm/min, but when the workpiece speed is more than 150 mm/min the normal force is increased tardily. Moreover, the normal force is increased sharply with the increase of grinding depth and is increased slowly with the increase of wheel speed. In general, the surface roughness is increased with workpiece speed and grinding depth increasing, while the trend of increase corresponding that of workpiece speed is more evident. The value of the surface roughness is decreased with wheel speed increasing. And it is found out that the main defect is burning of the IC10 superalloy material in creep feed grinding by energy spectrum analysis of some typical topography in this study.


Author(s):  
B W Kruszyński ◽  
P Lajmert

This paper presents an intelligent system for optimization of the cylindrical traverse grinding process whose objective is to maximize the material removal rate with constraints on workpiece out-of-roundness and waviness errors, on surface finish, and on grinding temperature. A theoretical analysis of wheel wear development in the traverse grinding process is presented. Next, the results of an experimental test are discussed to establish the most efficient strategy for grinding allowance removal. In the optimization scheme a feedforward neural network is employed to obtain a model which describes relations between the process input parameters and the grinding results. Then this model is used to optimize adaptively the traverse grinding process. The performance of the proposed optimization system is evaluated by simulation research.


2012 ◽  
Vol 500 ◽  
pp. 168-173 ◽  
Author(s):  
Jian Guang Li ◽  
Jin Guang Du ◽  
Ying Xue Yao

This paper explains and demonstrates the machinability of dry and wet machining of SiC particle-reinforced aluminum metal matrix composites based on the experiments. The plunge surface experiments with mill-grinding method under wheel peripheral speed of up to 14.13m/s, feed rate 80mm/min and depth of cutting 50μm were carried out on a vertical CNC milling machine. The comparisons of dry and wet machining on the force composites and surface roughness (Ra) versus material removal volume were studied. The material removal volume was gained with the same machining parameters after an equal period of time. In most cases, the tangential mill-grinding force values are greater in wet machining condition than that in dry condition. But for normal mill-grinding force, the Fn values are much greater in dry machining condition than that in wet condition. And the normal mill-grinding force in wet machining increased quickly with increasing material removal volume. A better surface finish can be produced in dry machining than that produced by wet machining. The surface roughness decreased slowly with the increasing material removal volume and the surface roughness shows an insignificant decreasing trend in wet machining.


2020 ◽  
Vol 11 (3) ◽  
pp. 313-322
Author(s):  
Chairul Anam ◽  
◽  
Khairul Muzaka ◽  
Dian Ridlo Pamuji

The grinding process is a machining process to obtain qualified surface roughness levels and high dimensional accuracy. There are two types of processes in the grinding process, namely the roughening and finishing processes. The vibration effect of the roughing process can damage and shorten the life of the tool/machine, while in the finishing process, the effect of vibration will reduce the dimensional accuracy, shape, and surface smoothness of the workpiece. This study aims to determine the effect of crossfeed on the amplitude of vibration and surface roughness of the workpiece on the surface grinding process. The materials used are hardened tool steel OCR12VM with a variety of grinding stone types A46QV and A80LV made of aluminum oxide. The Variables of process parameters are crossfeed (mm / step) and depth of cut (mm). The measurement of vibrations uses an accelerometer, which is processed by the math CAD program in the form of amplitude and frequency. For surface roughness measurements, it is used the MT-301 surface test with 5 sample points and a sample length of 0.8 mm. The results show that the greater the cross-feed value, the bigger the amplitude of the vibration level and the surface roughness of the workpiece. The magnitude of the amplitude of the vibration on the acceleration that occurs in the grinding stone type A46QV starts from 6,7369 -18.7525 g.rms, while the grinding stone type A80LV starts from 5.0904 g.rms to 18.2821 g.rms. The surface roughness achieved in both grit 46 and grit 80 is from N3 to N5.


2017 ◽  
Vol 107 (06) ◽  
pp. 461-466
Author(s):  
S. Müller ◽  
M. Kittel ◽  
D. Trauth ◽  
F. Prof. Klocke

Faserverstärkte Oxidkeramiken (CMC) mit poröser Matrix sind ein zukunftsrelevanten Werkstoff für Hochtemperaturanwendungen. Eine Schleifbearbeitung von Komponenten aus faserverstärkten Oxidkeramiken ist in vielen Fällen notwendig. Allerdings existieren keine Kenntnisse zu den bei der Schleifbearbeitung vorliegenden Zerspanmechanismen und dem daraus resultierenden Zerspanverhalten. Der Fachartikel stellt eine Methodik zur Analyse der Zerspanmechanismen vor.   Fiber-reinforced oxide ceramics with porous matrix represent a future-oriented material for high-temperature applications. Grinding of components made of fiber-reinforced ceramics is necessary in many cases. However, the material removal mechanisms in a grinding process and the resulting machining behavior is unknown. This paper presents a methodology for the analysis of the material removal mechanisms.


2009 ◽  
Vol 626-627 ◽  
pp. 165-170 ◽  
Author(s):  
J.F. Chen ◽  
J.H. Cui ◽  
F. Li

In this paper, the principle and impact factors for super-accurate grinding are analyzed and discussed. A comparative test is made to investigate the differences between advanced cubic boron nitride (CBN) slipstone and ordinary CBN abrasive corundum in performance such as grinding force, grinding temperature, metal surface metamorphic layer and so on. Based on these results, we design and manufacture a carding Laura slot super-accurate grinding machine. This new grinding machine is standard in system, compact in structure and perfect in appearance. Its fixture has a high positioning accuracy. The surface roughness of the Laura manufactured on the new grinding machine has reduced to Ra0.01μm. The productivity of the new machine increases by 25 times.


Sign in / Sign up

Export Citation Format

Share Document