Computational investigation on the performance of hydrodynamic micro-textured journal bearing lubricated with micropolar fluid using mass-conserving numerical approach

Author(s):  
Belkacem Manser ◽  
Idir Belaidi ◽  
Sofiane Khelladi ◽  
Mohamed A Ait Chikh ◽  
Michael Deligant ◽  
...  

The tribological characteristic of journal bearing systems can be enhanced with the integrating of textures in the contact interfaces, or using the lubricating effect of non-Newtonian fluids. In this study, the combined effects of bearing surface texturing and non-Newtonian lubricants behavior, using micropolar fluid model, on static characteristics of hydrodynamic circular journal bearings of finite length are highlighted. The modified Reynolds equation of micropolar lubrication theory is solved using finite differences scheme and Elrod's mass conservation algorithm, taking into account the presence of the cylindrical texture shape on full and optimum bearing surfaces. The optimization textured area is carried out through particle swarm optimization algorithm, in order to increase the load lifting capacity. Preliminary results are in good agreement with the reference ones, and present an enhancement in the performances of micro-textured journal bearings (load carrying capacity and friction). The results suggest that texturing the bearing convergent zone significantly increases the load carrying capacity and reduce friction coefficient, while fully texturing causes bad performances. It is also shown that the micropolar fluids exhibit better performances for smooth journal bearings than a Newtonian fluid depending on the size of material characteristic length and the coupling number. The combined effects of fully surface textured with micropolar fluids reduce the performance of journal bearing, especially at lower eccentricity ratios. Considering the optimal arrangement of textures on the contact surface, a significant improvement in terms of load capacity and friction can be achieved, particularly at high eccentricity ratios, high material characteristic lengths and high values of the coupling numbers of micropolar fluids.

Author(s):  
Ravindra Mallya ◽  
Satish B Shenoy ◽  
Raghuvir Pai

The static characteristics of misaligned three-axial water-lubricated journal bearing in the turbulent regime are analyzed for groove angles 36° and 18°. Ng and Pan’s turbulence model is applied to study the turbulence effects in the journal bearing. The static parameters such as load-carrying capacity, friction coefficient, and side leakage are found for different degree of misalignment (DM). The change in flow regime of the lubricant from laminar to turbulent and the increase in misalignment, improved the load capacity of the bearing. For lightly loaded bearings, the friction coefficient of the bearing increased with the increase in Reynolds number.


2012 ◽  
Vol 58 (2) ◽  
Author(s):  
T. V. V. L. N. Rao ◽  
A. M. A. Rani ◽  
T. Nagarajan ◽  
F. M. Hashim

The present study examines the influence of partial texturing of bearing surfaces on improvement in load capacity and reduction in friction coefficient for slider and journal bearing. The geometry of partially textured slider and journal bearing considered in this work composed of a number of successive regions of groove and land configurations. The nondimensional pressure expressions for the partially textured slider and journal bearing are derived taking into consideration of texture geometry and extent of partial texture. Partial texturing has a potential to generate load carrying capacity and reduce coefficient of friction, even for nominally parallel bearing surfaces.


1997 ◽  
Vol 119 (1) ◽  
pp. 76-84 ◽  
Author(s):  
E. Kim ◽  
A. Z. Szeri

We have demonstrated earlier that for laminar, isothermal flow of the lubricant in the non-cavitating film of long journal bearings, inertia has negligible effect on the load-carrying capacity and influences only the stability characteristics of the bearing. The question we pose in the present paper is: “will these conclusions remain valid for nonisothermal flow, or will lubricant inertia and dissipation interact and result in significant changes in bearing performance?” The results obtained here assert that the effect of lubricant inertia on load-carrying capacity remains negligible, irrespective of the rate of dissipation. The stability of the bearing is, however, affected by lubricant inertia. These results, although obtained here for long bearings and noncavitating films, are believed to be applicable to some practical bearing operations and suggest that for these, bearing load may be calculated from classical, i.e., noninertial theory.


Author(s):  
Biplab Bhattacharjee ◽  
Prasun Chakraborti ◽  
Kishan Choudhuri

The features of micropolar fluid (a non-Newtonian fluid)–lubricated short single-layered porous hydrostatic journal bearing are analyzed theoretically by an iterative method. To investigate hydrostatic journal bearing characteristics, a modified Reynolds equation in the case of micropolar fluid is derived and solved numerically. The obtained results in this work are validated by comparing the same with previously published results with Newtonian and non-Newtonian lubricants in the form of design charts. The static stiffness and load-carrying capacity of the investigated bearing are 80% and 75% higher than conventional hydrostatic bearings. The porous hydrostatic journal bearing exhibits more economical performance as it requires 40% low flow rate and low pump power, and it generates 50% less heat in contrast with other hydrostatic bearings.


2013 ◽  
Vol 315 ◽  
pp. 830-834 ◽  
Author(s):  
T.V.V.L.N. Rao ◽  
Ahmad Majdi Abdul-Rani ◽  
Nagarajan Thirumalaiswamy ◽  
Fakhruldin M. Hashim

This work presents the load carrying capacity of partially textured journal bearing with trapezoidal recess. The partial texture geometry is composed of a number of successive cells of trapezoidal recess and land configurations. The non-dimensional pressure expressions for the partially textured journal bearing with trapezoidal recess are derived. Results of nondimensional load capacity are provided taking into consideration of texture geometry with trapezoidal recess and extent of partial texture.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2120 ◽  
Author(s):  
Hamid Sadabadi ◽  
Amir Sanati Nezhad

Nanofluids have extensive applications in hydrodynamic journal bearings used in heavy industry machinery. Inorganic fullerene-like tungsten disulfide nanoparticles (IF-WS2 NPs) are the most common additive for lubrication purpose due to their excellent mechanical characteristics along with their effect on reducing friction and wear. In this work, a computational simulation approach with discrete phase modeling (DPM) of suspended nanoparticles was used to evaluate the application of the IF-WS2 nanofluid lubricant on load carrying capacity of high-load journal bearings where the normal loads are high, considering the bearing dimensions. For accurate simulation, nanofluid viscosity was calculated considering the aggregation effect of NPs by using scanning electron microscopy (SEM) imaging of the nanofluids. A benchmark study was first performed to assess the model accuracy. Hydrodynamic lubrication was simulated under different nanofluid weigh fractions. The simulated pressure distribution was then employed to determine the load capacity of the bearing. The results show an approximately 20% improvement of load carrying capacity at 5% weight fraction of WS2-oil nanofluid.


2019 ◽  
Vol 39 (2) ◽  
pp. 197-204
Author(s):  
Janardhan Chander Matlapudi ◽  
Prudhvi Kanth Gunti ◽  
Datta Sriram Sigatapu ◽  
Niranjana Behera

Performance of plain journal bearings can be different by inserting inserting grooves of different cross-sections either on the journal or a bearing surface. This paper presents the prediction of load carrying capacity, stiffness, and damping coefficients of spiral-grooved bearing using the Computational Fluid dynamics (CFD) technique. The spiral grooves have been provided on the rotor surface. The error between the predicted values of these parameters using the CFD and the experimental value is low. A comparative analysis of performance has also been carried out between a grooved journal bearing and a plain journal bearing. The load carrying capacity of plain journal bearing is high when compared to spiral grooved journal bearing. At higher eccentrcity ratios, stability of a spiral-grooved journal bearing is comparatively better than a plain bearing.


2011 ◽  
Vol 295-297 ◽  
pp. 1244-1250
Author(s):  
Jian Xi Yang ◽  
Fa Yu Zhang ◽  
Jian Ting Liu ◽  
Jian Fang Zhou

To obtain a new method to improve hydrodynamic bearing carrying capacity, hydrodynamic journal bearing’s characteristics as well as the current study direction are analyzed. According to the calculation of general cylindrical hydrodynamic journal bearing, the mathematic model for sinusoidal surface hydrodynamic bearing’s carrying capacity is established. It is used to calculate, analyze and compare these two bearings’ carrying capacity with example. The bearing, which has the characteristic of sinusoidal surface, has stronger carrying capacity than general cylindrical hydrodynamic bearing. What’s more, the improvement is more obvious when the number of waves is 3, also it has wider carrying area. Compared with other journal bearings, the journal bearing with sinusoidal surfaces has stronger carrying capacity, smaller friction moment and longer life-span. Therefore, it has extensive prospect.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
N. B. Naduvinamani ◽  
Archana K. Kadadi

A theoretical study of the effect of the viscosity variation on the squeeze film performance of a short journal bearing operating with micropolar fluid is presented. The modified Reynolds equation accounting for the viscosity variation in micropolar fluid is mathematically derived. To obtain a closed form solution, the short bearing approximation under constant load is considered. The modified Reynolds equation is solved for the fluid film pressure and then the bearing characteristics, such as obtaining the load carrying capacity and the squeeze film time. According to the results evaluated, the micropolar fluid as a lubricant improves the squeeze film characteristics and results in a longer bearing life, whereas the viscosity variation factor decreases the load carrying capacity and squeezes film time. The result is compared with the corresponding Newtonian case.


Author(s):  
N B Naduvinamani ◽  
S S Huggi

On the basis of Eringen's micropolar fluid theory, a theoretical analysis of hydrodynamic squeeze film behaviour for short partial porous journal bearings lubricated by micropolar fluids is presented in this article. To take into account the micropolar effects because of the lubricant containing additives or suspended particles in a short partial porous journal bearing, the modified Reynolds equation governing the film pressure is derived. Expressions for the squeeze film pressure and load-carrying capacity are obtained. The first-order non-linear equation for the time-height relation is solved numerically by using the Runge—Kutta method. From the results obtained, it is observed that, the effect of micropolar fluid is to increase the load-carrying capacity and to lengthen the squeeze film time as compared to the corresponding Newtonian case. The effect of permeability is to reduce the load-carrying capacity and the squeeze film time as compared to the corresponding solid case.


Sign in / Sign up

Export Citation Format

Share Document