Prediction of thermally induced postbuckling of clutch disks using the finite element method

Author(s):  
Zhuo Chen ◽  
Yun-Bo Yi ◽  
Ke Bao

Buckling and postbuckling of automotive clutch disks can be excited by the temperature fields caused by frictional heat generation during engagement of clutch systems. Linear and nonlinear buckling finite element analyses are performed to evaluate the thermal postbuckling of clutch metal disks. The dominant buckling modes are first obtained through performing linear buckling finite element analysis (FEA) analyses. The scaled displacement fields obtained from the linear buckling FEA analyses are added to the original geometries to generate the perturbed meshes. The postbuckling is then investigated by performing nonlinear buckling FEA analyses. The commercial FEA software ABAQUS is used in the current study. The effects of the temperature-dependent material properties are studied. It is concluded that the temperature dependence of material properties affects the postbuckling behaviors significantly.

2011 ◽  
Vol 223 ◽  
pp. 733-742 ◽  
Author(s):  
Barbara Linke ◽  
Michael Duscha ◽  
Anh Tuan Vu ◽  
Fritz Klocke

The grinding process is one of the most important finishing processes to obtain high surface quality. Nowadays, grinding is also considered as a high performance process with high material removal rates. Nevertheless, to avoid thermally-induced structural changes poses a major challenge for this manufacturing technology. Until now, the Finite Element Method (FEM) has been widely applied as a proper numerical technique to predict workpiece properties in machining processes. However, actual models in grinding are limited to conventional grinding processes with simple workpiece profiles and low table speeds. In this paper, finite element simulations are expanded to 3-dimensional (3D) models with temperature-dependent material properties and heat source profiles derived from experimental results, i.e. tangential forces. Both temperature simulation and measurement were conducted for deep grinding, pendulum grinding and speed stroke grinding in the table speed range of vw= 12 m/min to 180 m/min and specific material removal rates of Q’w= 40 mm³/mms. Overall, the simulation results show a good agreement with the measured temperature and surface integrity after grinding. This research indicates that a 3D FE model with temperature dependent material properties can predict realistic temperature fields in speed stroke grinding. Therefore, the experiment and measurement costs and time can be reduced by FEM simulation.


2011 ◽  
Vol 295-297 ◽  
pp. 1428-1432
Author(s):  
Zhi Bo Yang ◽  
Li Mei Zhang ◽  
Peng Fei Luo ◽  
Jiu Hua Xu

The purpose of this paper is used Ansys to simulate the temperature field of laser brazing by FEM. The 3-D solid elements are used in FEM model, and nonlinear factors of temperature-dependent material properties are considered. The surface temperature grades have been attained, and the brazing experiment have been conducted, the results show that the wetting of Ni-Cr alloy to diamond is good. This study is useful for selecting reasonable processing parameters on laser brazing.


2006 ◽  
Vol 03 (01) ◽  
pp. 115-135 ◽  
Author(s):  
MENG-CHENG CHEN ◽  
JIAN-JUN ZHU ◽  
K. Y. SZE

An ad hoc one-dimensional finite element formulation is developed for the eigenanalysis of inplane singular electroelastic fields at material and geometric discontinuities in piezoelectric elastic materials by using the eigenfunction expansion procedure and the weak form of the governing equations for prismatic sectorial domains composed of piezoelectrics, composites or air. The order of the electroelastic singularities and the angular variation of the stress and electric displacement fields are obtained with the formulation. The influence of wedge angle, polarization orientation, material types, and boundary and interface conditions on the singular electroelastic fields and the order of their singularity are also examined. The simplicity and accuracy of the formulation are demonstrated by comparison to several analytical solutions for piezoelectric and composite multi-material wedges. The nature and speed of convergence suggests that the present eigensolution could be used in developing hybrid elements for use along with standard elements to yield accurate and computationally efficient solutions to problems having complex global geometries leading to singular electroelastic states.


Author(s):  
Joonas Ponkala ◽  
Mohsin Rizwan ◽  
Panos S. Shiakolas

The current state of the art in coronary stent technology, tubular structures used to keep the lumen open, is mainly populated by metallic stents coated with certain drugs to increase biocompatibility, even though experimental biodegradable stents have appeared in the horizon. Biodegradable polymeric stent design necessitates accurate characterization of time dependent polymer material properties and mechanical behavior for analysis and optimization. This manuscript presents the process for evaluating material properties for biodegradable biocompatible polymeric composite poly(diol citrate) hydroxyapatite (POC-HA), approaches for identifying material models and three dimensional solid models for finite element analysis and fabrication of a stent. The developed material models were utilized in a nonlinear finite element analysis to evaluate the suitability of the POC-HA material for coronary stent application. In addition, the advantages of using femtosecond laser machining to fabricate the POC-HA stent are discussed showing a machined stent. The methodology presented with additional steps can be applied in the development of a biocompatible and biodegradable polymeric stents.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Vishnu Verma ◽  
A. K. Ghosh ◽  
G. Behera ◽  
Kamal Sharma ◽  
R. K. Singh

The miniature disk bending test is used to evaluate the mechanical behavior of irradiated materials and their properties (e.g., yield stress and strain hardening exponent) to determine mainly ductility loss in steel due to irradiation from the load-deflection behavior of the disk specimen. In the miniature disk bending machine the specimen is firmly held between the two horizontal jaws of punch, and an indentor with a spherical ball travels vertically. Analytical solutions for large amplitude plastic deformation become rather unwieldy. Hence, a finite element analysis has been carried out. The finite element model considers contact between the indentor and test specimen, friction between various pairs of surfaces, and elastic plastic behavior. This paper presents the load versus deflection results of a parametric study where the values of various parameters defining the material properties have been varied by ±10% around the base values. Some well-known analytical solutions to this problem have also been considered. It is seen that the deflection obtained by analytical elastic bending theory is significantly lower than that obtained by the elastoplastic finite element solution at relatively small values of load. The finite element solution has been compared with one experimental result and values are in reasonably good agreement. With these results it will be possible to determine the material properties from the experimentally obtained values of load and deflection.


Sign in / Sign up

Export Citation Format

Share Document