scholarly journals The transmitted and reflected waves due to the incidence of a forced wave on a junction

2016 ◽  
Vol 23 (1) ◽  
pp. 3-16 ◽  
Author(s):  
John L Davy ◽  
Alexandra L Irwin
Keyword(s):  
2010 ◽  
Vol 7 ◽  
pp. 129-142
Author(s):  
M.A. Ilgamov ◽  
A.G. Khakimov

The article investigates the reflection of a longitudinal damped travelling wave from the transverse notch and its movement along an infinite rod plunged into viscous liquid. The simplest model for the stress deformed state in the notch zone is applied. The solution is found to depend on the parameters of the liquid and damping characteristics in the material of the rod and the surrounding liquid. The solution to the inverse problem makes it possible to define the coordinate of the notch and the parameter that contains its depth and length using data on both the incident and reflected waves at the observation point.


2007 ◽  
Vol 5 ◽  
pp. 212-220 ◽  
Author(s):  
M.A. Ilgamov ◽  
A.G. Khakimov

This article investigates the reflection of a longitudinal wave from the transverse notch and its movement along an infinite rod. The dependence is obtained between the reflected wave and parameters of the notch. The statement of the inverse problem allows defining the coordinate of the notch and the parameter that contains its depth and length using data on both the incident and reflected waves at the observation point.


2021 ◽  
Vol 20 (1-2) ◽  
pp. 4-34
Author(s):  
Reda R Mankbadi ◽  
Saman Salehian

In this work we propose replacing the conventional flat-surface airframe that shields the engine by a wavy surface. The basic principle is to design a wavy pattern to reflect the incoming near-field flow and acoustic perturbations into waves of a particular dominant frequency. The reflected waves will then excite the corresponding frequency of the large-scale structure in the initial region of the jet’s shear layer. By designing the frequency of the reflected waves to be the harmonic of the fundamental frequency that corresponds to the radiated peak noise, the two frequency-modes interact nonlinearly. With the appropriate phase difference, the harmonic dampens the fundamental as it extracts energy from it to amplify. The outcome is a reduction in the peak noise. To evaluate this concept, we conducted Detached Eddy Simulations for a rectangular supersonic jet with and without the wavy shield and verified our numerical results with experimental data for a free jet, as well as, for a jet with an adjacent flat surface. Results show that the proposed wavy surface reduces the jet noise as compared to that of the corresponding flat surface by as much as 4 dB.


Author(s):  
Francesco Serafino ◽  
Simone Bonamano ◽  
Francesco Paladini de Mendoza ◽  
Marco Marcelli

2012 ◽  
Vol 204-208 ◽  
pp. 4971-4977
Author(s):  
Ya Mei Lan ◽  
Wen Hua Guo ◽  
Yong Guo Li

The CFD software FLUENT was used as the foundation to develop the numerical wave flume, in which the governing equations are the Reynolds-averaged Navier-Stokes (RANS) equations and the standard k~ε turbulence model. The wave generating and absorbing were introduced into the RANS equations as the source terms using the relaxation approach. A new module of the wave generating and absorbing function, which is suitable for FLUENT based on the volume of fluid method (VOF), was established. Within the numerical wave flume, the reflected waves from the model within the computation domain can be absorbed effectively before second reflection appears due to the wave generating boundary. The computational results of the wave pressures on the bottom of the rectangular slab were validated for the different relative clearance by the experimental data. Good agreements were found.


2021 ◽  
Vol 13 (9) ◽  
pp. 1846
Author(s):  
Vivek Kumar ◽  
Isabel M. Morris ◽  
Santiago A. Lopez ◽  
Branko Glisic

Estimating variations in material properties over space and time is essential for the purposes of structural health monitoring (SHM), mandated inspection, and insurance of civil infrastructure. Properties such as compressive strength evolve over time and are reflective of the overall condition of the aging infrastructure. Concrete structures pose an additional challenge due to the inherent spatial variability of material properties over large length scales. In recent years, nondestructive approaches such as rebound hammer and ultrasonic velocity have been used to determine the in situ material properties of concrete with a focus on the compressive strength. However, these methods require personnel expertise, careful data collection, and high investment. This paper presents a novel approach using ground penetrating radar (GPR) to estimate the variability of in situ material properties over time and space for assessment of concrete bridges. The results show that attributes (or features) of the GPR data such as raw average amplitudes can be used to identify differences in compressive strength across the deck of a concrete bridge. Attributes such as instantaneous amplitudes and intensity of reflected waves are useful in predicting the material properties such as compressive strength, porosity, and density. For compressive strength, one alternative approach of the Maturity Index (MI) was used to estimate the present values and compare with GPR estimated values. The results show that GPR attributes could be successfully used for identifying spatial and temporal variation of concrete properties. Finally, discussions are presented regarding their suitability and limitations for field applications.


Sign in / Sign up

Export Citation Format

Share Document