scholarly journals Identifying Spatial and Temporal Variations in Concrete Bridges with Ground Penetrating Radar Attributes

2021 ◽  
Vol 13 (9) ◽  
pp. 1846
Author(s):  
Vivek Kumar ◽  
Isabel M. Morris ◽  
Santiago A. Lopez ◽  
Branko Glisic

Estimating variations in material properties over space and time is essential for the purposes of structural health monitoring (SHM), mandated inspection, and insurance of civil infrastructure. Properties such as compressive strength evolve over time and are reflective of the overall condition of the aging infrastructure. Concrete structures pose an additional challenge due to the inherent spatial variability of material properties over large length scales. In recent years, nondestructive approaches such as rebound hammer and ultrasonic velocity have been used to determine the in situ material properties of concrete with a focus on the compressive strength. However, these methods require personnel expertise, careful data collection, and high investment. This paper presents a novel approach using ground penetrating radar (GPR) to estimate the variability of in situ material properties over time and space for assessment of concrete bridges. The results show that attributes (or features) of the GPR data such as raw average amplitudes can be used to identify differences in compressive strength across the deck of a concrete bridge. Attributes such as instantaneous amplitudes and intensity of reflected waves are useful in predicting the material properties such as compressive strength, porosity, and density. For compressive strength, one alternative approach of the Maturity Index (MI) was used to estimate the present values and compare with GPR estimated values. The results show that GPR attributes could be successfully used for identifying spatial and temporal variation of concrete properties. Finally, discussions are presented regarding their suitability and limitations for field applications.

2020 ◽  
pp. 147592172097699
Author(s):  
Isabel M Morris ◽  
Vivek Kumar ◽  
Branko Glisic

We present here a laboratory-based experimental protocol that seeks to establish and characterize the relationship between ground-penetrating radar attributes and the mechanical properties (density, porosity, and compressive strength) of typical industry concrete mixes. The experimental data consist of ground-penetrating radar attributes from 900 MHz radargrams that correspond to simultaneously measured physical properties of Portland cement concrete, alkali-activated concrete, and cement mortar. Appropriate regression models are trained and tested on this data set to predict each physical property from ground-penetrating radar attributes. From a small selection of individual attributes, including total phase and intensity, trained random forest regression models predict porosity ( R2 = 0.83 from the instantaneous amplitude), density ( R2 = 0.67 from the intensity attribute), and compressive strength ( R2 = 0.51 from instantaneous amplitude). These novel relationships between physical properties and ground-penetrating radar attributes indicate that material properties could be predicted from the attributes of ordinary ground-penetrating radar scans of concrete.


2018 ◽  
Author(s):  
Timothy H. Larson ◽  
Riley J. Balikian ◽  
Ursula Ruiz-Vera ◽  
Donald Ort

2016 ◽  
Author(s):  
Hamza Reci ◽  
Tien Chinh Maï ◽  
Zoubir Mehdi Sbartaï ◽  
Lara Pajewski ◽  
Emanuela Kiri

Abstract. This paper presents the results of a series of laboratory measurements carried out to study how the Ground Penetrating Radar (GPR) signal is affected by moisture variation in wood material. The effects of the wood fiber direction, with respect to the polarisation of the electromagnetic field, are investigated. The relative permittivity of wood and the amplitude of the electric field received by the radar are measured for different humidity levels, by using the direct-wave method in Wide Angle Radar Reflection configuration, where one GPR antenna is moved while the other is kept in a fixed position. The received signal is recorded for different separations between transmitting and receiving antennas. Direct waves are compared to reflected waves: it is observed that they show a different behaviour when the moisture content varies, due to their different propagation paths.


2019 ◽  
Vol 11 (7) ◽  
pp. 828
Author(s):  
Frédéric André ◽  
François Jonard ◽  
Mathieu Jonard ◽  
Harry Vereecken ◽  
Sébastien Lambot

Accurate characterization of forest litter is of high interest for land surface modeling and for interpreting remote sensing observations over forested areas. Due to the large spatial heterogeneity of forest litter, scattering from litter layers has to be considered when sensed using microwave techniques. Here, we apply a full-waveform radar model combined with a surface roughness model to ultrawideband ground-penetrating radar (GPR) data acquired above forest litter during controlled and in situ experiments. For both experiments, the proposed modeling approach successfully described the radar data, with improvements compared to a previous study in which roughness was not directly accounted for. Inversion of the GPR data also provided reliable estimates of the relative dielectric permittivity of the recently fallen litter (OL layer) and of the fragmented litter in partial decomposition (OF layer) with, respectively, averaged values of 1.35 and 3.8 for the controlled experiment and of 3.9 and 7.5 for the in situ experiment. These results show the promising potentialities of GPR for efficient and non-invasive characterization of forest organic layers.


2019 ◽  
Vol 55 (11) ◽  
pp. 10026-10036 ◽  
Author(s):  
Daniel McGrath ◽  
Ryan Webb ◽  
David Shean ◽  
Randall Bonnell ◽  
Hans‐Peter Marshall ◽  
...  

Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 403-414 ◽  
Author(s):  
Tong Xu ◽  
George A. McMechan

Modeling of ground‐penetrating radar (GPR) data in 2.5 dimensions is implemented by superposition of 2-D finite‐difference, time‐domain solutions of Maxwell's equations for different horizontal wavenumbers. Dielectric, magnetic, and conductive losses are included in a single formulation. Attenuations associated with dielectric and magnetic relaxations are introduced by superposition of Debye functions at a set of relaxation frequencies and using memory variables to replace convolutions between the field variables and the decay functions. Better fits to data may always be obtained using the superposition method than by the Cole‐Cole model. Good fits to both loss‐tangent versus frequency data from lab measurements, and to 500 and 900 MHz field GPR profiles of a buried pipe and the surrounding layers, demonstrate the flexibility and viability of the modeling algorithm. Discrepancies between lab and in‐situ measurements may be attributed to scale differences and local variations that make lab samples less representative of the site than the GPR profile.


2013 ◽  
Vol 718-720 ◽  
pp. 842-847
Author(s):  
Peng Fei Shan ◽  
Xing Ping Lai ◽  
Jian Tao Cao ◽  
Lin Yao Li

For high production of raw coal in steep coal seams, it is crucial to obtain engineer demands by enhancing section height in horizontal caving. However in-situ operations copious methods like pre-blasting was always needed to broken top-coal which was difficult to excavate commodiously and safely. Explosive wave caused by pre-blasting would destroy stress balance around entries, and definitely result in entry disturbed zone (EDZ) being loosen zone. Aimed to determine boundary of EDZ and keep rock mass in both entries steady, combined tests to EDZ of rock masses of head entry of +600 east-side stope of 43# coal seam was done in Wudong Colliery as research background with ground penetrating radar (GPR) and mono-hole ultrasonic wave experiment. It indicated that scope of EDZ here was 2.2-2.3m, which would be prerequisite to optimize supporting scheme in field.


2017 ◽  
Vol 22 (3) ◽  
pp. 209-221 ◽  
Author(s):  
Janet E. Simms ◽  
S. Kyle McKay ◽  
Robert W. McComas ◽  
J. Craig Fischenich

Sign in / Sign up

Export Citation Format

Share Document