forced wave
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 215
Author(s):  
Hongli Jia ◽  
Hongbing Xin

In contrast to the conventional forced wave generator which consists of cam and flexible bearing in harmonic drive, the novel forced wave generator retains cam but cancels flexible bearing. In this article, the lubrication characteristics of the novel forced wave generator in harmonic drive is studied. First, an elliptical sliding bearing (ESB) model of simplified structure between the novel forced wave generator and the flex spline is established. Further, the computational fluid dynamics (CFD) method is employed to study the effect of some factors on the lubrication characteristics of the ESB model including elliptical gap ratio, width, and rotational speed. According to the analysis, the elliptical gap ratio has a great impact and its optimal value is 3, which is used in the design of the novel forced wave generator. Last, the practical design of the novel forced wave generator in harmonic drive is given, which can provide a basis for design and optimization of a forced wave generator without flexible bearing of the harmonic drive.


2021 ◽  
Vol 11 (22) ◽  
pp. 10948
Author(s):  
Elisabetta Manconi ◽  
Sergey V. Sorokin ◽  
Garziera Rinaldo ◽  
Matheus Mikael Quartaroli

In many practical engineering situations, a source of vibrations may excite a large and flexible structure such as a ship’s deck, an aeroplane fuselage, a satellite antenna, a wall panel. To avoid transmission of the vibration and structure-borne sound, radial or polar periodicity may be used. In these cases, numerical approaches to study free and forced wave propagation close to the excitation source in polar coordinates are desirable. This is the paper’s aim, where a numerical method based on Floquet-theory and the FE discretision of a finite slice of the radial periodic structure is presented and verified. Only a small slice of the structure is analysed, which is approximated using piecewise Cartesian segments. Wave characteristics in each segment are obtained by the theory of wave propagation in periodic Cartesian structures and Finite Element analysis, while wave amplitude change due to the changes in the geometry of the slice is accommodated in the model assuming that the energy flow through the segments is the same. Forced response of the structure is then evaluated in the wave domain. Results are verified for an infinite isotropic thin plate excited by a point harmonic force. A plate with a periodic radial change of thickness is then studied. Free waves propagation are shown, and the forced response in the nearfield is evaluated, showing the validity of the method and the computational advantage compared to FE harmonic analysis for infinite structures.


2021 ◽  
Vol 193 ◽  
pp. 106129 ◽  
Author(s):  
Francesca Vadalá ◽  
Andrea Bacigalupo ◽  
Marco Lepidi ◽  
Luigi Gambarotta

2020 ◽  
Author(s):  
Richard Blender ◽  
Joscha Fregin

<p>We consider recharge-discharge processes in a forced wave-mean flow interaction model and in a forced Rossby wave triad. Such processes are common in atmospheric dynamics and are typically modelled by nonlinear oscillators, for example for mid-latitude storms by Ambaum and Novak (2013) and for convective cycles by Yano and Plant (2012). A similar behaviour can be seen in the simulation of a forced wave number triad by Lynch (2009). Here we construct noncanonical Hamiltonian and Nambu representations in three-dimensional phase space for available and prescribed conservation laws during the recharge and discharge regimes. Divergence in phase space is modelled by a pre-factor. The approach allows the design of conservative and forced dynamical systems.</p>


2016 ◽  
Vol 23 (1) ◽  
pp. 3-16 ◽  
Author(s):  
John L Davy ◽  
Alexandra L Irwin
Keyword(s):  

2014 ◽  
Vol 875-877 ◽  
pp. 642-646 ◽  
Author(s):  
Miras Dolayev ◽  
Sergey Panchenko ◽  
Rinat Bakytbekov ◽  
Roman Ivlyev

A new approach to information recording in distributed media based on the forced wave excitation involved by temperature fluctuations was proposed. The scheme of the device providing the implementation of the proposed approach is considered.


Sign in / Sign up

Export Citation Format

Share Document