Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis

2009 ◽  
Vol 15 (5) ◽  
pp. 644-646 ◽  
Author(s):  
J Liang ◽  
H Zhang ◽  
B Hua ◽  
H Wang ◽  
J Wang ◽  
...  

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system. Umbilical cord derived mesenchymal stem cells are immunosuppressive. We transplanted mesenchymal stem cells in a patient with refractory progressive MS, and the disease course was stabilized after the transplantation. We postulate that mesenchymal stem cells have a potent immunosuppressive effect in vivo.

Author(s):  
Laura Piccio ◽  
Anne H. Cross

Multiple sclerosis (MS) is considered to be an autoimmune disease of the central nervous system that targets myelin but affects both white matter and gray matter. Multiple sclerosis is thought to be mediated by cells of the adaptive and innate immune systems. CD4+ T lymphocytes of the Th1 and Th17 subtypes are believed to be critical for the initiation of multiple sclerosis. Treatment with monoclonal antibodies that deplete B lymphocytes has proven that B cells are critical to relapse development in multiple sclerosis. While immunopathophysiology is clearly important in MS, whether multiple sclerosis is truly an autoimmune disorder and the target or targets of the autoimmunity remain unknown.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Genaro G. Ortiz ◽  
Fermín P. Pacheco-Moisés ◽  
Oscar K. Bitzer-Quintero ◽  
Ana C. Ramírez-Anguiano ◽  
Luis J. Flores-Alvarado ◽  
...  

Multiple sclerosis (MS) exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB), the recruitment of lymphocytes, microglia, and macrophages to lesion sites, the presence of multiple lesions, generally being more pronounced in the brain stem and spinal cord, the predominantly perivascular location of lesions, the temporal maturation of lesions from inflammation through demyelination, to gliosis and partial remyelination, and the presence of immunoglobulin in the central nervous system and cerebrospinal fluid. Lymphocytes activated in the periphery infiltrate the central nervous system to trigger a local immune response that ultimately damages myelin and axons. Pro-inflammatory cytokines amplify the inflammatory cascade by compromising the BBB, recruiting immune cells from the periphery, and activating resident microglia. inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in the demyelination and free radical-mediated tissue injury in the pathogenesis of MS. The inflammatory environment in demyelinating lesions leads to the generation of oxygen- and nitrogen-free radicals as well as proinflammatory cytokines which contribute to the development and progression of the disease. Inflammation can lead to oxidative stress and vice versa. Thus, oxidative stress and inflammation are involved in a self-perpetuating cycle.


2011 ◽  
Vol 8 (3) ◽  
pp. 940-952 ◽  
Author(s):  
J. P. S. Peron ◽  
T. Jazedje ◽  
W. N. Brandão ◽  
P. M. Perin ◽  
M. Maluf ◽  
...  

2017 ◽  
Vol 37 (05) ◽  
pp. 538-545 ◽  
Author(s):  
Eduardo Caverzasi ◽  
Christian Cordano ◽  
Stephen Hauser ◽  
Roland Henry ◽  
Antje Bischof

Neuroimaging has emerged as a powerful technology that has enabled visualization of the impact of multiple sclerosis (MS) on the central nervous system in vivo with unprecedented precision. It has played a crucial role in disentangling the chronology of inflammation and neurodegeneration, developing and understanding mechanisms of novel therapeutics, and diagnosing and monitoring the disease in the clinical setting. However, challenges pertaining to the limited resolution, lack of specificity, inherent technological biases, and processing of increasingly big datasets have hindered comprehensive insights into the pathology underlying disability.Here, we review the advances in neuroimaging for MS that have moved the field forward in recent years by addressing the above-mentioned issues, thereby enhancing our knowledge of this yet enigmatic disease. We discuss complementary imaging technologies, including magnetic resonance imaging, positron emission tomography, and optical coherence tomography, the most recent tool in the MS imaging armamentarium that holds promise to act as a surrogate of pathological changes in the central nervous system in a more easily accessible way.


2012 ◽  
Vol 18 (3) ◽  
pp. 258-263 ◽  
Author(s):  
M Kipp ◽  
S Amor

FTY720 (fingolimod; Gilenya®), a sphingosine 1-phosphate (S1P) receptor modulator, is the first oral disease-modifying therapy to be approved for the treatment of relapsing–remitting multiple sclerosis. FTY720 is rapidly converted in vivo to the active S-fingolimod-phosphate, which binds to S1P receptors. This action inhibits egress of lymphocytes from the lymph nodes, preventing entry into the blood and thus infiltration into the central nervous system. More recent studies, however, convincingly show that FTY720 crosses the blood–brain barrier, where it is thought to act on S1P receptors on cells within the central nervous system, such as astrocytes, oligodendrocytes or microglia. Here we discuss the evidence showing that FTY720 also plays a role in remyelination and repair within the brain. While the mechanisms of action still require firm elucidation, it is clear that FTY720 could also be reparative, extending its therapeutic potential for multiple sclerosis.


Sign in / Sign up

Export Citation Format

Share Document