scholarly journals The question of the human in the Anthropocene debate

2016 ◽  
Vol 20 (1) ◽  
pp. 44-60 ◽  
Author(s):  
Daniel Chernilo

The Anthropocene debate is one of the most ambitious scientific programmes of the past 15 or 20 years. Its main argument is that, from a geological point of view, humans are considered a major force of nature, thus implying that our current geological epoch is dominated by human activity. The Anthropocene has slowly become a contemporary meta-narrative that seeks to make sense of the ‘earth-system’ as a whole, and one whose vision of the future is dystopian rather than progressive: as the exploitation of the planet’s natural resources reaches tipping point, the very prospects of the continuity of human life are being questioned. This article aims to explore the implicit notions of the human – indeed of the anthropos – that are being mobilized in the Anthropocene debate. It will proceed in two stages: first, the article will spell out the main arguments of the Anthropocene debate with a particular focus on trying to unpack its implicit ideas of the human. Second, it will use my approach to philosophical sociology to highlight some of the limitations and contradictions of the ideas of agency, reflexivity and responsibility that underpin the Anthropocene debate.

Author(s):  
Carole L. Crumley

Recent, widely recognized changes in the Earth system are, in effect, changes in the coupled human–environment system. We have entered the Anthropocene, when human activity—along with solar forcing, volcanic activity, precession, and the like—must be considered a component (a ‘driver’) of global environmental change (Crutzen and Stoermer 2000; Levin 1998). The dynamic non-linear system in which we live is not in equilibrium and does not act in a predictable manner (see Fairhead, chapter 16 this volume for further discussion of non-equilibrium ecology). If humankind is to continue to thrive, it is of utmost importance that we identify the ideas and practices that nurture the planet as well as our species. Our best laboratory for this is the past, where long-, medium-, and short-term variables can be identified and their roles evaluated. Perhaps the past is our only laboratory: experimentation requires time we no longer have. Thus the integration of our understanding of human history with that of the Earth system is a timely and urgent task. Archaeologists bring two particularly useful sets of skills to this enterprise: how to collaborate, and how to learn from the past. Archaeology enjoys a long tradition of collaboration with colleagues in both the biophysical sciences and in the humanities to investigate human activity in all planetary environments. Archaeologists work alongside one another in the field, live together in difficult conditions, welcome collaboration with colleagues in other disciplines—and listen to them carefully—and tell compelling stories to an interested public. All are rare skills and precious opportunities. Until recently few practitioners of biophysical, social science, and humanities disciplines had experience in cross-disciplinary collaboration. Many scholars who should be deeply engaged in collaboration to avert disaster (for example, specialists in tropical medicine with their counterparts in land use change) still speak different professional ‘languages’ and have very different traditions of producing information. C. P. Snow, in The Two Cultures (1993 [1959]), was among the first to warn that the very structure of academia was leading to this serious, if unintended, outcome.


Dark Skies ◽  
2020 ◽  
pp. 65-104
Author(s):  
Daniel Deudney

Humans have always attributed enormous importance to occurrences in the heavens. Over the past several centuries modern astronomy has revealed a cosmos of staggering size, filled with trillions of worlds. Its vacuum, weightlessness, lethal radiations, and fantastic speeds make space harshly inhospitable to human life. To access orbital space requires velocities some thirty-four times as fast as jet aircraft, climbing out of steep gravity wells. Of the many bodies mapped by science in this solar system, asteroids are most practically important because they sometimes collide with great violence, profoundly shaping Earth’s deep history. As knowledge of the cosmos has grown, anticipations of nearby intelligent life have dramatically shrunk. The Space Age has also witnessed a far-reaching revolution in understanding the Earth System. Marked by complexity, chaos, and emergence, life on Earth is incompletely understood and inventoried and much less subject to human control than previously assumed, reducing the feasibility of expansionist visions.


2015 ◽  
Vol 3 (2) ◽  
pp. 262-265
Author(s):  
Dr.Navdeep Kaur

Since its evolution environment has remained both a matter of awe and concern to man. The frontier attitude of the industrialized society towards nature has not only endangered the survival of all other life forms but also threatened the very existence of human life. The realization of such potential danger has necessitated the dissemination of knowledge and skill vis-a-vis environment protection at all stages of learning. Therefore, learners of all stages of learning need to be sensitized with a missionary zeal. This may ensure transformation of students into committed citizens for averting global environment crisis. The advancement of science and technology made the life more and more relaxed and man also became more and more ambitious. With such development, human dependence on environment increased. He consumed more resources and the effect of his activities on the environment became more and more detectable. Environment covers all the things present around the living beings and above the land, on the surface of the earth and under the earth. Environment indicates, in total, all of peripheral forces, pressures and circumstances, which affect the life, nature, behaviour, growth, development and maturation of living beings. Irrational exploitation (not utilization) of natural resources for our greed (not need) has endangered our survival, and incurred incalculable harm. Environmental Education is a science, a well-thought, permanent, lasting and integrated process of equipping learning experiences for getting awareness, knowledge, understanding, skills, values, technical expertise and involvement of learners with desirable attitudinal changes about their relationship with their natural and biophysical environment. Environmental Education is an organized effort to educate the masses about environment, its functions, need, importance, and especially how human beings can manage their behaviour in order to live in a sustainable manner.  The term 'environmental awareness' refers to creating general awareness of environmental issues, their causes by bringing about changes in perception, attitude, values and necessary skills to solve environment related problems. Moreover, it is the first step leading to the formation of responsible environmental behaviour (Stern, 2000). With the ever increasing development by modern man, large scale degradation of natural resources have been occurred, the public has to be educated about the fact that if we are degrading our environment we are actually harming ourselves. To encourage meaningful public participation and environment, it is necessary to create awareness about environment pollution and related adverse effects. This is the crucial time that environmental awareness and environmental sensitivity should be cultivated among the masses particularly among youths. For the awareness of society it is essential to work at a gross root level. So the whole society can work to save the environment.


2018 ◽  
Vol 115 (33) ◽  
pp. 8252-8259 ◽  
Author(s):  
Will Steffen ◽  
Johan Rockström ◽  
Katherine Richardson ◽  
Timothy M. Lenton ◽  
Carl Folke ◽  
...  

We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a “Hothouse Earth” pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System—biosphere, climate, and societies—and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.


2018 ◽  
Author(s):  
Angelo De Santis ◽  
Gianfranco Cianchini ◽  
Rita Di Giovambattista ◽  
Cristoforo Abbattista ◽  
Lucilla Alfonsi ◽  
...  

Abstract. Geosystemics (De Santis 2009, 2014) studies the Earth system as a whole focusing on the possible coupling among the Earth layers (the so called geo-layers), and using universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms. Its main objective is to understand the particular phenomenon of interest from a holistic point of view. In this paper we will deal with earthquakes, considered as a long term chain of processes involving, not only the interaction between different components of the Earth’s interior, but also the coupling of the solid earth with the above neutral and ionized atmosphere, and finally culminating with the main rupture along the fault of concern (De Santis et al., 2015a). Some case studies (particular emphasis is given to recent central Italy earthquakes) will be discussed in the frame of the geosystemic approach for better understanding the physics of the underlying complex dynamical system.


2020 ◽  
Vol 16 (2) ◽  
pp. 69-89
Author(s):  
Adnan Mohamed Yusoff ◽  
Abdoul Karim Toure

Animals and livestock are part of the main phenomenon of the Quran which highlights its intimacy with nature and human life. Names, types, properties, stories or matters that are related to animals and livestock appear specifically, scientifically and strategically in the Quran. This phenomenon attracts researchers to observe this emerging trend from a statistical point of view including the type of animal, frequency and place of emergence, as well as the objective of its mention either in actual form or as a metaphor. Thus, this study aims to identify the name or type of animal that has been selected to be immortalised in this Holy Book, the frequency and condition of its appearance, and subsequently the objective of its mention in the verse or surah. This is very important as basic data which will pave the way to a more advanced study in highlighting the majesty and miracles of the Quran in various dimensions that are related to natural resources. Correspondingly, this is a library study that is based on research on the text, especially the books of authentic interpretation, contemporary tafsir studies, the Ulum Quran, scientific journals, and other related texts. Among the important findings of the study is that animals and livestock are not a side element that comes to complete the beauty of the Quranic word or metaphor, or the physical design framework of its arrangement alone, for the presence of each of these animals or livestock is to carry the mission and certain objectives that cannot be played by other components in it. This study also paves the way for various further studies that can be explored by interested researchers, as well as in tadabbur activities that successfully attract the interest of today's society to get closer to the Quran.


2021 ◽  
Author(s):  
Anni Zhao ◽  
Chris Brierley

<p>Experiment outputs are now available from the Coupled Model Intercomparison Project’s 6<sup>th</sup> phase (CMIP6) and the past climate experiments defined in the Model Intercomparison Project’s 4<sup>th</sup> phase (PMIP4). All of this output is freely available from the Earth System Grid Federation (ESGF). Yet there are overheads in analysing this resource that may prove complicated or prohibitive. Here we document the steps taken by ourselves to produce ensemble analyses covering past and future simulations. We outline the strategy used to curate, adjust the monthly calendar aggregation and process the information downloaded from the ESGF. The results of these steps were used to perform analysis for several of the initial publications arising from PMIP4. We provide post-processed fields for each simulation, such as climatologies and common measures of variability. Example scripts used to visualise and analyse these fields is provided for several important case studies.</p>


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 412 ◽  
Author(s):  
Angelo De Santis ◽  
Cristoforo Abbattista ◽  
Lucilla Alfonsi ◽  
Leonardo Amoruso ◽  
Saioa A. Campuzano ◽  
...  

Earthquakes are the most energetic phenomena in the lithosphere: their study and comprehension are greatly worth doing because of the obvious importance for society. Geosystemics intends to study the Earth system as a whole, looking at the possible couplings among the different geo-layers, i.e., from the earth’s interior to the above atmosphere. It uses specific universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms (e.g., ground, marine or satellite observations). Its main objective is to understand the particular phenomenon of interest from a holistic point of view. Central is the use of entropy, together with other physical quantities that will be introduced case by case. In this paper, we will deal with earthquakes, as final part of a long-term chain of processes involving, not only the interaction between different components of the Earth’s interior but also the coupling of the solid earth with the above neutral or ionized atmosphere, and finally culminating with the main rupture along the fault of concern. Particular emphasis will be given to some Italian seismic sequences.


2017 ◽  
Vol 04 (01) ◽  
pp. 1750004 ◽  
Author(s):  
David C. Eisenhauer

The arrival of the Anthropocene entails an evolutionary tipping point that challenges basic precepts of political theory and modern science. Within this paper, emerging scholarship in political science, science and technology studies, and sustainability science are brought together to sketch out an approach for crafting more just and sustainable pathways in response to the crossing of critical thresholds in the Earth system. Accomplishing this task requires responding to the emerging reality of possibility, irreversibility, entanglement, and novelty that the Anthropocene and tipping points entail. I argue that grounding political projects in recognition of the unfolding and unpredictable terrain tipping points present allows for the opening of novel pathways toward a still possible just and sustainable planet.


Sign in / Sign up

Export Citation Format

Share Document