Flexural behaviour of glass fibre-reinforced polymer and ultra-high-strength fibre-reinforced concrete composite beams subjected to elevated temperature

2016 ◽  
Vol 20 (9) ◽  
pp. 1357-1374 ◽  
Author(s):  
Isuru Sanjaya Kumara Wijayawardane ◽  
Hiroshi Mutsuyoshi ◽  
Hai Nguyen ◽  
Allan Manalo

Composite beams consisting of pultruded glass fibre-reinforced polymer (GFRP) I-beams and ultra-high-strength fibre-reinforced concrete (UFC) slabs have been developed for use in short-span bridges. Fibre-reinforced polymer bolts (fibre-reinforced polymer threaded rods) and epoxy adhesive were used to connect the UFC slab to the GFRP I-beam. The authors conducted material tests and large-scale static bending tests at room and elevated temperatures (less than 90°C) to investigate the flexural behaviour of GFRP-UFC composite beams subjected to elevated temperature. The test results demonstrated that the mechanical properties of the GFRP I-beams, fibre-reinforced polymer bolts and epoxy adhesive were significantly deteriorated at elevated temperatures due to the glass transition of their polymer resin matrices. As a result, the stiffness and ultimate flexural capacity of the GFRP-UFC composite beams under elevated temperatures were significantly reduced. More than 85% of the flexural capacity of the GFRP-UFC composite beams was retained up to 60°C but that was decreased to 50% at 90°C. Fibre model analysis results confirmed that the stiffness of the GFRP-UFC composite beams is not significantly affected by actual hot environments, where there is a moderate temperature gradient across the beam cross-section.

Author(s):  
Allan Manalo ◽  
Mac Pac

Fibre composite guardrails are increasingly being used to ensure safety of workers from fall-from-height incidents due to its high strength, high corrosion resistance and low maintenance. In this study, the structural behaviour of pultruded glass fibre-reinforced polymer (GFRP) guardrail was evaluated following AS1657-1992. GFRP guardrail systems mounted on top and side of a steel beam with different joint connectors are loaded horizontally to top of the guardrail post and to the middle of the guardrail member. The results showed that the guardrail system with joints connected with either polypin or rivets combined with epoxy exhibited 20% higher failure load and almost double the stiffness than those connected using polypin or rivets alone. The side-mounted guardrail failed due to failure of the base connector while the guardrail mounted on top of the beam failed at the joints indicating that the structural behaviour of GFRP guardrail system is affected mainly by the type of joints.


2018 ◽  
Vol 21 (10) ◽  
pp. 1585-1594 ◽  
Author(s):  
Jin-Guang Teng ◽  
Zihao Wang ◽  
Tao Yu ◽  
Yang Zhao ◽  
Li-Juan Li

This article presents a new form of fibre-reinforced polymer-concrete-steel hybrid columns and demonstrates some of its expected advantages using results from an experimental study. These columns consist of a concrete-filled fibre-reinforced polymer tube that is internally reinforced with a high-strength steel tube and are referred to as hybrid double-tube concrete columns. The three components in hybrid double-tube concrete columns (i.e. the external fibre-reinforced polymer tube, the concrete infill and the internal high-strength steel tube) are combined in an optimal manner to deliver excellent short- and long-term performance. The experimental study included axial compression tests on eight hybrid double-tube concrete columns with a glass fibre–reinforced polymer external tube covering different glass fibre–reinforced polymer tube thicknesses and diameters as well as different high-strength steel tube diameters. The experimental results show that in hybrid double-tube concrete columns, the concrete is well confined by both the fibre-reinforced polymer tube and the high-strength steel tube, and the buckling of the high-strength steel tube is suppressed so that its high material strength can be effectively utilized, leading to excellent column performance. Due to the high yield stress of high-strength steel, the hoop stress developed to confine the core concrete is much higher than can be derived from a normal-strength steel tube, giving the use of high-strength steel in double-tube concrete columns an additional advantage.


2019 ◽  
Vol 23 (1) ◽  
pp. 104-117
Author(s):  
Haifeng Mao ◽  
Dongdong Zhang ◽  
Li Chen ◽  
Qilin Zhao ◽  
Xiaoping Su ◽  
...  

A new glass fibre-reinforced polymer–metal structure with a string box-truss girder was designed as a vehicular emergency bridge. The glass fibre-reinforced polymer–metal emergency bridge is intended to be lightweight, structurally sound, with a long span and modular feasibility, and associated with a faster construction bridging system. In this study, the detailed conceptual design of the new bridge is described first. A large-scale static bending loading test was carried out on a fabricated bridge to examine its actual flexural performance under the serviceability limit state. The experimental emergency bridge exhibited a satisfactory overall stiffness and loading-carrying capacity in terms of its intended applications. Its linear-elastic flexural behaviour implies that the structural design of such a unique emergency bridge subjected to positive flexural moment is stiffness-driven instead of strength-driven. Furthermore, structural computational models, including three-dimensional finite element models and a simplified analytical planar model, were constructed and validated by comparing with the experimental results. The elicited comparisons indicated that the realistic nodal stiffness of the hybrid pre-tightened teeth connection and its adjacent steel planar gusset plates ought to be considered in numerical and analytical modelling. Correspondingly, during the preliminary design phase and calculations, the flexural behaviour of this unique emergency bridge can be predicted using the validated numerical and simplified analytical models.


2017 ◽  
Vol 52 (15) ◽  
pp. 2115-2128 ◽  
Author(s):  
Anita Orlowska ◽  
Cezary Graczykowski ◽  
Adam Galezia

This paper studies the effect of prestress force magnitude on natural frequencies and dynamic behaviour of eccentrically prestressed glass fibre reinforced polymer composite beams, including the theoretical background, numerical results and experimental verification. The term prestress indicates the initial tensile stress applied to the fibres embedded in selected external layers of the composite material. First, the paper presents the theoretical background of the finite element method modelling of prestressed composites. Then, the results of numerical simulations conducted for a five-layered glass-epoxy composite beam are presented. The natural frequencies corresponding to three initial bending modes are analyzed for different prestressing force levels and for different fibre volume content. Finally, the results are verificated by experimental modal analysis conducted on three different glass-epoxy composite specimens of various mechanical parameters. Both the numerical results obtained from finite element method and the experimental results obtained from experimental modal analysis reveal that the first bending frequency increases and the two subsequent bending frequencies decrease due to the prestressing force. The comparison of numerical and experimental data confirms the effect and allows to quantify the influence that the prestress force has on the natural frequencies of composites, which is an interesting and practically relevant phenomenon.


Sign in / Sign up

Export Citation Format

Share Document