Research on the hysteretic performance of flower-gusset composite joints for single-layer aluminium alloy lattice shell structures

2021 ◽  
pp. 136943322110463
Author(s):  
Caiqi Zhao ◽  
Gang Wang ◽  
Tengteng Zheng

Joints are the most critical component of reticulated shell structures, and their hysteretic performance is crucial to the mechanical properties of the whole reticulated shell structure under seismic action. Therefore, the hysteretic behaviour of aluminium alloy flower-gusset composite joint for an out-of-plane bending moment was studied by experiments and numerical analysis. The results show that the hysteretic curves of flower-gusset composite joints and gusset joints contain four stages: an elastic stage, a bolt slip stage, a hole wall pressure-stiffness degradation stage and a failure stage. The hysteretic performance of the new flower-gusset composite joint is obviously better than that of the traditional plate joint. With the increase in the thickness of the cover plate, the bending stiffness of the flower-gusset composite joint increases significantly, while the rotational deformation decreases. Then, a restoring force model of the flower-gusset composite joint is proposed through theoretical analysis based on experiments and numerical analysis.

2017 ◽  
Vol 21 (9) ◽  
pp. 1273-1287 ◽  
Author(s):  
Jiepeng Liu ◽  
Yuanlong Yang ◽  
Hua Song ◽  
Yuyin Wang

A numerical analysis based on previous experiment has been carried out on T-shaped concrete-filled steel tubular columns subjected to constant axial compressive load and cyclic lateral loads. Tensile bar stiffeners were introduced to be welded on inside surfaces of steel tube to postpone its local buckling and to enhance the confinement of steel tube for concrete. A modified fiber-based method was developed to establish numerical modeling program of specimens’ cyclic behavior, incorporating the effect of stiffeners on postponing steel tube’s local buckling and the confinement for concrete. The reciprocating movement of inflection point along frame column is also considered in the numerical program. A simplified arc-length method was employed as iterative control algorithm of the numerical model. Horizontal load–displacement hysteretic curves of specimens were calculated with the numerical model and verified with test results. A restoring force model based on experimental investigation was proposed as simplified method for engineering practice.


2014 ◽  
Vol 501-504 ◽  
pp. 1619-1622
Author(s):  
Jian Min Jin ◽  
Ping Tan ◽  
Xiang Yun Huang ◽  
Yan Hui Liu

Based on the compression-shear tests of different specifications LRBs (diameter 700mm,1000mm,1100mm) and shear strain correlation formula, the modified differential restoring force model (modified Bouc-Wen model) is suggested to simulate LRB. An isolated model, nine-story superstructure, is used as the numerical example. Using the unmodified and the modified differential restoring force model of the LRB, the differences of the seismic response of isolated structure are studied by numerical analysis and comparison. Result shows that, unmodified differential restoring force model commonly used in isolation design, except for acceleration response, other earthquake response has not significant error.


2012 ◽  
Vol 256-259 ◽  
pp. 693-696
Author(s):  
Peng Li ◽  
Ya Ping Peng ◽  
Er Lei Yao

In order to evaluate the seismic performance of reinforced concrete (RC) frames retrofitted by FRP, the experiment of RC frames retrofitted at joints by FRP was carried out. The enhancement in seismic performance of the retrofitted frames is evaluated in hysteretic performance, bearing capacity, stiffness degradation and energy dissipation. And the strengthening effect of the frame retrofitted by CFRP and C/GFRP was compared in the experiment. The restoring force model of RC frame joints retrofitted with FRP was proposed and ranges of the characteristic parameters were determined. The equation of restoring force model for joints strengthened by C/GFRP was suggested. The result show that seismic performance of RC frame retrofitted by FRP based on joints can be improved remarkably. The restoring force model which proposed can be used in seismic elasto-plastic analysis of RC frame structure retrofitted by FRP and practical engineering seismic retrofitting design by FRP.


2019 ◽  
Vol 22 (12) ◽  
pp. 2662-2671 ◽  
Author(s):  
Xiao-Wei Fan ◽  
Long-He Xu ◽  
Xing-Si Xie ◽  
Yu-Sheng Sun ◽  
Zhong-Xian Li

The ability of an idealized piecewise-linear restoring force model and a nonlinear mechanical model to describe the hysteretic performances of the pre-pressed spring self-centering energy dissipation braces was evaluated based on experimental data. The hysteretic behaviors predicted by these two proposed models were compared with the experimental results of a typical prototype brace, and the results demonstrated that the two models can explain the brace force-time responses, and that the nonlinear mechanical model is more effective in describing the stiffness transition and energy dissipation of the brace. The two proposed models can be used for the design of the pre-pressed spring self-centering energy dissipation brace specimens, and the nonlinear mechanical model may be more useful for designing the structures with the pre-pressed spring self-centering energy dissipation braces. An orthogonal experiment was applied to analyze the influences of the key parameters on the performances of pre-pressed spring self-centering energy dissipation braces based on the nonlinear mechanical model. The results indicate that the friction slip force of energy dissipation mechanism, the pre-pressed force of self-centering mechanism, and the post-activation stiffness significantly affect the hysteretic performances and equivalent viscous damping ratios of the bracing system, while the changes in other parameters only produce slight effects. The determination of the pre-pressed force of the self-centering mechanism should be coordinated with the friction slip force of the energy dissipation mechanism to achieve a better hysteretic performance of the pre-pressed spring self-centering energy dissipation brace.


2015 ◽  
Vol 741 ◽  
pp. 431-434
Author(s):  
Xia Qing Jiang

This study is the additional metal damper damping performance , trying to make the structure look for useful conclusions acceleration and displacement reaction of reduced to a single particle system as the research object , the use of process analysis, first establish additional metal damper restoring force model of the structure to determine the parameters and the dependent variable , and finally based on the results of numerical analysis to calculate the acceleration response and the theoretical displacement reaction conditions to reduce the additional metal damper structure , and make the appropriate analysis .


2012 ◽  
Vol 594-597 ◽  
pp. 886-890 ◽  
Author(s):  
Gan Hong ◽  
Mei Li ◽  
Yi Zhen Yang

Abstract. In the paper, take full account of energy dissipation operating characteristics. Interlayer shear-frame structure for the analysis of the Wilson-Θmethod ELASTOPLASTIC schedule, the design of a nonlinear dynamic time history analysis procedure. On this basis, taking into account the restoring force characteristics of the energy dissipation system, the inflection point in the restoring force model treatment, to avoid a result of the calculation results of distortion due to the iterative error. A frame structure seismic response time history analysis results show that: the framework of the energy dissipation significantly lower than the seismic response of the common framework, and its role in the earthquake when more significant.


2013 ◽  
Vol 376 ◽  
pp. 231-235
Author(s):  
Cheng Li ◽  
Yun Zou ◽  
Jie Kong ◽  
Zhi Wei Wan

Nonlinear numerical analysis for the force performance of frame middle joint is processed in this paper with the finite element software of ABAQUS. Compared with experimental results, numerical analysis results are found to be reasonable. Then the influence of factors such as shaped steel ratio and axial-load ratio are contrastively analyzed. The results show that shaped steel ratio has a greater influence on the bearing capacity and hysteretic performance of the structure, but the axial-load ratio has less influence.


2014 ◽  
Vol 578-579 ◽  
pp. 936-939 ◽  
Author(s):  
Qian Qian Sun ◽  
Yun Zou ◽  
Qiang Wang

Nonlinear numerical analysis of the stress performance of SRC-RC transfer columns was carried out in this paper with the finite element software of ABAQUS. Compered with the experimental result , numerical analysis result are found to be reasonable.Then the influence of factors such as extension length of shape steel , area ratio of shape steel and axial-load ratio were contrastively analyzed . The results show that extension length of shape steel and the area ratio of shape steel have a greater influence on the bearing capacity and the hysteretic performance of transfer column ,but axial-load ratio has less influence .


Sign in / Sign up

Export Citation Format

Share Document