An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability

Author(s):  
Mostafa Habibi ◽  
Roya Darabi ◽  
Jose C de Sa ◽  
Ana Reis

Experimental and numerical study regarding the uniaxial tensile test and the forming limit diagram are addressed in this paper for AL2024 with the face-centered cube structure. First, representation of a grain structure can be obtained directly by mapping metallographic observations via scanning electron microscopy approach. Artificial grain microstructures produced by Voronoi Tessellation method are employed in the model using VGRAIN software. By resorting to the finite element software (ABAQUS) capabilities, the constitutive equations of the crystal plasticity were utilized and implemented as a user subroutine material UMAT code. The hardening parameters were calibrated by a trial and error approach in order to fit experimental tensile results with the simulation. Then the effect of the changing grain size, the heterogeneity factor, and the grain aspect ratio were studied for a uniaxial tensile test to emphasize the importance of the microstudy behavior of grains in material behavior. Furthermore, the polycrystal plasticity grain distribution was employed in the Nakazima test in order to obtain the forming limit diagram. The crystal plasticity-driven forming limit diagram reveals more accurate strains, taking into account the involving the micromechanical features of the grains. An innovative approach is pursued in this study to discover the necking angle, both in tensile test or Nakazima samples, showing a good agreement with the experiment results.

2014 ◽  
Vol 622-623 ◽  
pp. 292-299 ◽  
Author(s):  
Tomoyuki Ota ◽  
Takashi Iizuka

A number of researches have conducted in order to evaluate the ductile fracture occurrence by using forming limit diagram. However, specimen shape and testing machine for obtaining forming limit diagram of sheet metal have some problems. The problem about specimen shape is occurring at the specimen edge. In uniaxial tensile test, the specimen edge may cause a defused neck in width direction and may have influence on fracture occurrence. In biaxial tensile test by using a cruciform specimen, a uniform biaxial deformation is not obtained because uniaxial tensile stress occurs at the specimen edge. Tensile test by using a specimen which does not have such edges should carry out, for example, in bulge test and multi-axial tube expansion test, specimens without edge are used. However, these methods need special machines. Therefore, new biaxial tensile testing method is required. By this method, materials deform depending on biaxial strain state by using popular pressing machines.


2011 ◽  
Vol 383-390 ◽  
pp. 5404-5408
Author(s):  
Dedi Priadi ◽  
Richard A. M. Napitupulu ◽  
Eddy S. Siradj

The alternate method for evaluating the thermo mechanical process has been developed. Small attention has been paid to the mechanism of plastic deformation especially plane strain analysis. Modified the specimen geometry and using uniaxial tensile test was done to view the process. Experimental results show that the forming limit diagram as one of the formability characteristic can be view the plane strain condition that present on the thermo mechanical process. The microstructure result shows that there is a similar grain structure between hot tensile test and hot rolling results as one of thermo mechanical process method. It was concluded that the uniaxial test using universal testing machine could be done to evaluate the thermo mechanical process.


2018 ◽  
Vol 19 (2) ◽  
pp. 202 ◽  
Author(s):  
Rasoul Safdarian

Forming limit diagram (FLD) is one of the formability criteria which is a plot of major strain versus minor strain. In the present study, Gurson-Tvergaard-Needleman (GTN) model is used for FLD prediction of aluminum alloy 6061. Whereas correct selection of GTN parameters’ is effective in the accuracy of this model, anti-inference method and numerical simulation of the uniaxial tensile test is used for identification of GTN parameters. Proper parameters of GTN model is imported to the finite element analysis of Nakazima test for FLD prediction. Whereas FLD is dependent on forming history and strain path, forming limit stress diagram (FLSD) based on the GTN damage model is also used for forming limit prediction in the numerical method. Numerical results for FLD, FLSD and punch’s load-displacement are compared with experimental results. Results show that there is a good agreement between the numerical and experimental results. The main drawback of numerical results for prediction of the right-hand side of FLD which was concluded in other researchers’ studies was solved in the present study by using GTN damage model.


2005 ◽  
Vol 495-497 ◽  
pp. 1627-1632 ◽  
Author(s):  
Laurent Delannay ◽  
M. Melchior ◽  
Pascal J. Jacques ◽  
Paul van Houtte

This work investigates the micro-mechanics of a multiphase steel sheet during a uniaxial tensile test. Based on crystal plasticity theory, one assesses how the distribution of strain and stress is influenced by the presence of a soft b.c.c. phase and a strong f.c.c. phase. The two phases have been characterized by neutron diffraction. Initial textures are used as input in crystal plasticity simulations. Lattice strains measured in the tensile direction serve to fit hardening parameters. Three modeling hypotheses are tested: the Taylor model assumes uniform strain, the ALAMEL model considers the interaction of pairs of adjacent grains, and a finite element mesh is used to distribute strain and stress over the complete aggregate. The accuracy of each modeling is evaluated based on experimental measurements of the macroscopic stress, the heterogeneity of plastic strain, and the texture development in the two phases.


Author(s):  
Xiao-Yan Gong ◽  
Alan R. Pelton

Nitinol, an alloy of about 50% Ni and 50% Ti, is a very unique material. At constant temperature above its Austenite finish (Af) temperature, under uniaxial tensile test, the material is highly nonlinear and capable of large deformation to the ultimate strain on the order of 15%. This material behavior, known as superelasticity, along with its excellent biocompatibility and corrosion resistance, makes Nitinol a perfect material candidate for many medical device applications. However, the nonlinear material response also requires a specific material description to perform the stress analysis. The user developed material subroutine from HKS/West makes the simulation of the Nitinol devices possible. This article presents two case studies of the nonlinear finite element analysis using ABAQUS/Standard and the Nitinol UMAT.


2013 ◽  
Vol 58 (4) ◽  
pp. 1213-1217
Author(s):  
W. Fracz ◽  
F. Stachowicz ◽  
T. Trzepieciński ◽  
T. Pieją

Abstract Formability of sheet metal is dependent on the mechanical properties. Some materials form better than others - moreover, a material that has the best formability for one stamping may behave very poorly in a stamping of another configuration. For these reasons, extensive test programs are often carried out in an attempt to correlate material formability with value of some mechanical properties. The formability of sheet metal has frequently been expressed by the value of strain hardening exponent and plastic anisotropy ratio. The stress-strain and hardening behaviour of a material is very important in determining its resistance to plastic instability. However experimental studies of formability of various materials have revealed basic differences in behaviour, such as the ”brass-type” and the ”steel-type”, exhibiting respectively, zero and positive dependence of forming limit on the strain ratio. In this study mechanical properties and the Forming Limit Diagram of the AMS 5599 sheet metal were determined using uniaxial tensile test and Marciniak’s flat bottomed punch test respectively. Different methods were used for the FLD calculation - results of these calculations were compared with experimental results


2005 ◽  
Vol 127 (4) ◽  
pp. 743-751 ◽  
Author(s):  
L. C. Chan ◽  
C. H. Cheng ◽  
S. M. Chan ◽  
T. C. Lee ◽  
C. L. Chow

This paper presents a formability analysis of tailor-welded blanks (TWBs) made of cold rolled steel sheets with varying thicknesses. Steel sheets ranging between 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, and 1.0 mm in thickness were used to produce TWBs of different thickness combinations. The primary objective of this paper is to characterize the effects of thickness ratios on the forming limit diagram (FLD) for a particular type of TWB. The TWBs chosen for the investigation are designed with the weld line located in the center of the specimens perpendicular to the principal strain direction. Nd:YAG laser butt-welding was used to prepare different tailor-made blank specimens for uniaxial tensile tests and Swift tests. The experimental results of the uniaxial tensile test clearly revealed that there were no significant differences between the tensile strengths of TWBs and those of the base metals. After the Swift tests, the formability of TWBs was analyzed in terms of two measures: The forming limit diagram and minimum major strain. The experimental findings indicated that the higher the thickness ratio, the lower the level of the forming limit curve (FLC) and the lower the formability of the TWBs. The findings also show an inverse proportional relationship between thickness ratios and minimum major strains. TWBs with a thickness ratio of close to 1 were found to have a minimum major strain closer to those of base metals. The effects of different thickness ratios on TWBs were further analyzed with a finite element code in a computer-aided engineering package, PAM-STAMP, while the failure criteria of the TWBs in the finite element analysis were addressed by the FLCs which were obtained from the experiments. However, the weld of the TWB in the simulation was simply treated as a thickness step, whereas its heat affected zones were sometimes disregarded, so that the effects of the thickness ratio could be significantly disclosed without the presence of weld zones. The results of the simulation should certainly assist to clarify and explain the effects of different thickness ratios on TWBs.


Sign in / Sign up

Export Citation Format

Share Document