Finite Element Analysis on Nitinol Medical Applications

Author(s):  
Xiao-Yan Gong ◽  
Alan R. Pelton

Nitinol, an alloy of about 50% Ni and 50% Ti, is a very unique material. At constant temperature above its Austenite finish (Af) temperature, under uniaxial tensile test, the material is highly nonlinear and capable of large deformation to the ultimate strain on the order of 15%. This material behavior, known as superelasticity, along with its excellent biocompatibility and corrosion resistance, makes Nitinol a perfect material candidate for many medical device applications. However, the nonlinear material response also requires a specific material description to perform the stress analysis. The user developed material subroutine from HKS/West makes the simulation of the Nitinol devices possible. This article presents two case studies of the nonlinear finite element analysis using ABAQUS/Standard and the Nitinol UMAT.

Author(s):  
John Feldhacker ◽  
Zhong Hu ◽  
Fereidoon Delfanian

Upon analysis, thick wall cylinders designed for use in cannon barrel applications experience thermal and mechanical loading very near their fatigue limit. Chief factors in determining the lifetime of a cannon barrel involve internal thermal and mechanical damage caused by projectile firing. The most significant damage experienced in the cannon barrel is surface crack propagation which aids in surface erosion and fatigue failure. Adequate knowledge of these failure phenomena and the ability to predict the lifetime of gun barrels will greatly increase the successful application of their designs. This study will investigate three-dimensional stress of a pressurized thick cylinder using computer simulation based on structural-thermal coupled finite element analysis. The effects of high temperature and high pressure, as well as nonlinear material behavior, on stress-strain distribution during the firing process will be evaluated. This computer-based stress analysis will prove to be a valuable tool for assessing strength and forecasting the lifetime of cannon barrels.


2014 ◽  
Vol 644-650 ◽  
pp. 670-673
Author(s):  
Guo You Han ◽  
Ming Qi Wang ◽  
Yu Hou ◽  
Qiang Li

The finite element analysis of PCP involves three nonlinear of geometry, material and contact, and the load of PCP is diversity, leading to it difficult to establish the finite element model and calculate by finite method. This article takes GLB120-27 as an example, to establish 3D solid model of PCP by using SolidWorks; to determine M-R model constant of stator rubber by using the data of uniaxial tensile test: to separate the seal band from the stator chamber by using Boolean operation and set up contact pairs, to achieve the correct simulation of stator chamber fluid pressure; to correctly simulate the interference fit between stator and rotor through setting correlation parameters; to establish 3D finite element analysis model and verify the correctness by using the experiment data of hydraulic characteristics of PCP.


2018 ◽  
Vol 3 (1) ◽  
pp. 13-20
Author(s):  
Dávid Huri

Automotive rubber products are subjected to large deformations during working conditions, they often contact with other parts and they show highly nonlinear material behavior. Using finite element software for complex analysis of rubber parts can be a good way, although it has to contain special modules. Different types of rubber materials require the curve fitting possibility and the wide range choice of the material models. It is also important to be able to describe the viscoelastic property and the hysteresis. The remeshing possibility can be a useful tool for large deformation and the working circumstances require the contact and self contact ability as well. This article compares some types of the finite element software available on the market based on the above mentioned features.


Author(s):  
Brian Rose ◽  
James Widrig

High temperature piping systems and associated components, elbows and bellows in particular, are vulnerable to damage from creep. The creep behavior of the system is simulated using finite element analysis (FEA). Material behavior and damage is characterized using the MPC Omega law, which captures creep embrittlement. Elbow elements provide rapid yet accurate modeling of pinching of piping, which consumes a major portion of the creep life. The simulation is used to estimate the remaining life of the piping system, evaluate the adequacy of existing bellows and spring can supports and explore remediation options.


1998 ◽  
Vol 1624 (1) ◽  
pp. 225-230 ◽  
Author(s):  
Chuntao Zhang ◽  
Ian D. Moore

Thermoplastic pipes are being used increasingly for water supply lines, storm sewers, and leachate collection systems in landfills. To facilitate limit states design for buried polymer pipes, nonlinear constitutive models have recently been developed to characterize the highly nonlinear and time-dependent material behavior of high-density polyethylene (HDPE). These models have been implemented in a finite element program to permit structural analysis for buried HDPE pipes and to provide information regarding performance limits of the structures. Predictions of HDPE pipe response under parallel plate loading and hoop compression in a soil cell are reported and compared with pipe response measured in laboratory tests. Effects on the structural performance of pipe material nonlinearity, geometrical nonlinearity, and backfill soil properties were investigated. Good correlations were found between the finite element predictions and the experimental measurements. The models can be used to predict pipe response under many different load histories (not just relaxation or creep). Work is ongoing to develop nonlinear constitutive models for polyvinylchloride and polypropylene to extend the predictive capability of the finite element model to these materials.


Author(s):  
Jean Paul Kabche ◽  
Mauri´cio Rangel Pacheco ◽  
Ivan Thesi ◽  
Luiz Carlos Largura

Bolted connections are largely employed in various types of engineering structures to transfer loads from one member to another. In particular, the off-shore industry has made extensive use of these connections, predominantly at the sub-sea level. In spite of their advantages, bolted joints are critical regions and may become sources of structural weakness due to large stress concentrations. Under severe operating conditions, micro-cracks can develop in the bolt, creating regions of elevated stress which may significantly reduce the integrity of the connection and ultimately lead to failure. This paper presents the three-dimensional finite element analysis of a steel locked bolt assembly aimed to assess the effect of micro-cracks on the structural integrity of the assembly using the commercial finite element package ANSYS. Non-linear contact between the bolt and nut threads is considered, where frictional sliding between components is allowed. A bi-linear isotropic hardening model is used to account for non-linear material behavior. The assembly is loaded by applying a pre-load of fifty percent of the yield stress of the material, according to the API-6A Norm. Two geometric models are investigated: a healthy locked bolt assembly with no initial cracks; and a damaged model, where a circular crack is introduced at the root of the bolt threads. The effect of the crack size is studied by modeling the crack with three different radius sizes. The J-Integral fracture mechanics methodology was used to study the stress concentrations in the damaged model.


Sign in / Sign up

Export Citation Format

Share Document