Forming Limit Diagram of the AMS 5599 Sheet Metal

2013 ◽  
Vol 58 (4) ◽  
pp. 1213-1217
Author(s):  
W. Fracz ◽  
F. Stachowicz ◽  
T. Trzepieciński ◽  
T. Pieją

Abstract Formability of sheet metal is dependent on the mechanical properties. Some materials form better than others - moreover, a material that has the best formability for one stamping may behave very poorly in a stamping of another configuration. For these reasons, extensive test programs are often carried out in an attempt to correlate material formability with value of some mechanical properties. The formability of sheet metal has frequently been expressed by the value of strain hardening exponent and plastic anisotropy ratio. The stress-strain and hardening behaviour of a material is very important in determining its resistance to plastic instability. However experimental studies of formability of various materials have revealed basic differences in behaviour, such as the ”brass-type” and the ”steel-type”, exhibiting respectively, zero and positive dependence of forming limit on the strain ratio. In this study mechanical properties and the Forming Limit Diagram of the AMS 5599 sheet metal were determined using uniaxial tensile test and Marciniak’s flat bottomed punch test respectively. Different methods were used for the FLD calculation - results of these calculations were compared with experimental results

2018 ◽  
Vol 19 (2) ◽  
pp. 202 ◽  
Author(s):  
Rasoul Safdarian

Forming limit diagram (FLD) is one of the formability criteria which is a plot of major strain versus minor strain. In the present study, Gurson-Tvergaard-Needleman (GTN) model is used for FLD prediction of aluminum alloy 6061. Whereas correct selection of GTN parameters’ is effective in the accuracy of this model, anti-inference method and numerical simulation of the uniaxial tensile test is used for identification of GTN parameters. Proper parameters of GTN model is imported to the finite element analysis of Nakazima test for FLD prediction. Whereas FLD is dependent on forming history and strain path, forming limit stress diagram (FLSD) based on the GTN damage model is also used for forming limit prediction in the numerical method. Numerical results for FLD, FLSD and punch’s load-displacement are compared with experimental results. Results show that there is a good agreement between the numerical and experimental results. The main drawback of numerical results for prediction of the right-hand side of FLD which was concluded in other researchers’ studies was solved in the present study by using GTN damage model.


2014 ◽  
Vol 622-623 ◽  
pp. 292-299 ◽  
Author(s):  
Tomoyuki Ota ◽  
Takashi Iizuka

A number of researches have conducted in order to evaluate the ductile fracture occurrence by using forming limit diagram. However, specimen shape and testing machine for obtaining forming limit diagram of sheet metal have some problems. The problem about specimen shape is occurring at the specimen edge. In uniaxial tensile test, the specimen edge may cause a defused neck in width direction and may have influence on fracture occurrence. In biaxial tensile test by using a cruciform specimen, a uniform biaxial deformation is not obtained because uniaxial tensile stress occurs at the specimen edge. Tensile test by using a specimen which does not have such edges should carry out, for example, in bulge test and multi-axial tube expansion test, specimens without edge are used. However, these methods need special machines. Therefore, new biaxial tensile testing method is required. By this method, materials deform depending on biaxial strain state by using popular pressing machines.


Author(s):  
Mostafa Habibi ◽  
Roya Darabi ◽  
Jose C de Sa ◽  
Ana Reis

Experimental and numerical study regarding the uniaxial tensile test and the forming limit diagram are addressed in this paper for AL2024 with the face-centered cube structure. First, representation of a grain structure can be obtained directly by mapping metallographic observations via scanning electron microscopy approach. Artificial grain microstructures produced by Voronoi Tessellation method are employed in the model using VGRAIN software. By resorting to the finite element software (ABAQUS) capabilities, the constitutive equations of the crystal plasticity were utilized and implemented as a user subroutine material UMAT code. The hardening parameters were calibrated by a trial and error approach in order to fit experimental tensile results with the simulation. Then the effect of the changing grain size, the heterogeneity factor, and the grain aspect ratio were studied for a uniaxial tensile test to emphasize the importance of the microstudy behavior of grains in material behavior. Furthermore, the polycrystal plasticity grain distribution was employed in the Nakazima test in order to obtain the forming limit diagram. The crystal plasticity-driven forming limit diagram reveals more accurate strains, taking into account the involving the micromechanical features of the grains. An innovative approach is pursued in this study to discover the necking angle, both in tensile test or Nakazima samples, showing a good agreement with the experiment results.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1975-1980 ◽  
Author(s):  
WEI LIU ◽  
LINZHI WU ◽  
SHIJIAN YUAN

The uniaxial tensile test and hydraulic bulging test of AZ31 magnesium alloy sheets were applied to study the influence of temperature on the material properties and obtain the forming limit curves at different temperatures. Numerical simulations of warm hydro mechanical deep drawing were carried out to investigate the effect of hydraulic pressure on the formability of a cylindrical cup, and the simplified hydraulic pressure profiles were used to simulate the loading procedure of hydraulic pressure. The optimal hydraulic pressure at different temperatures were given and verified by experimental studies at temperature 100°C and 170V.


2011 ◽  
Vol 383-390 ◽  
pp. 5404-5408
Author(s):  
Dedi Priadi ◽  
Richard A. M. Napitupulu ◽  
Eddy S. Siradj

The alternate method for evaluating the thermo mechanical process has been developed. Small attention has been paid to the mechanism of plastic deformation especially plane strain analysis. Modified the specimen geometry and using uniaxial tensile test was done to view the process. Experimental results show that the forming limit diagram as one of the formability characteristic can be view the plane strain condition that present on the thermo mechanical process. The microstructure result shows that there is a similar grain structure between hot tensile test and hot rolling results as one of thermo mechanical process method. It was concluded that the uniaxial test using universal testing machine could be done to evaluate the thermo mechanical process.


Author(s):  
M. Carraturo ◽  
G. Alaimo ◽  
S. Marconi ◽  
E. Negrello ◽  
E. Sgambitterra ◽  
...  

AbstractAdditive manufacturing (AM), and in particular selective laser melting (SLM) technology, allows to produce structural components made of lattice structures. These kinds of structures have received a lot of research attention over recent years due to their capacity to generate easy-to-manufacture and lightweight components with enhanced mechanical properties. Despite a large amount of work available in the literature, the prediction of the mechanical behavior of lattice structures is still an open issue for researchers. Numerical simulations can help to better understand the mechanical behavior of such a kind of structure without undergoing long and expensive experimental campaigns. In this work, we compare numerical and experimental results of a uniaxial tensile test for stainless steel 316L octet-truss lattice specimen. Numerical simulations are based on both the nominal as-designed geometry and the as-build geometry obtained through the analysis of µ-CT images. We find that the use of the as-build geometry is fundamental for an accurate prediction of the mechanical behavior of lattice structures.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1097
Author(s):  
Umer Masood Chaudry ◽  
Seung-Chang Han ◽  
Fathia Alkelae ◽  
Tea-Sung Jun

In the present study, the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of friction stir welded (FSW) DP780 steel sheets was investigated. FSW was carried out at a constant tool rotation speed of 400 rpm and different welding speeds (200 mm/min and 400 min/min). A defect free weld was witnessed for both of the welding conditions. The mutual effect of severe plastic deformation and frictional heat generation by pin rotation during the FSW process resulted in grain refinement due to dynamic recrystallization in the stir zone (SZ) and thermo-mechanically affected zone (TMAZ). Lower tensile elongation and higher yield and ultimate tensile strengths were recorded for welded-samples as compared to the base material (BM) DP780 steel. The joints were subsequently annealed at various temperatures at 450–650 °C for 1 h. At higher annealing temperature, the work hardening rate of joints gradually decreased and subsequently failed in the softened heat-affected zone (HAZ) during the uniaxial tensile test. Reduction in yield strength and tensile strength was found in all PWHT conditions, though improvement in elongation was achieved by annealing at 550 °C. The digital image correlation analysis showed that an inhomogeneous strain distribution occurred in the FSWed samples, and the strain was particularly highly localized in the advancing side of interface zone. The nanoindentation measurements covering the FSWed joint were consistent with an increase of the annealing temperature. The various grains size in the BM, TMAZ, and SZ is the main factor monitoring the hardness distribution in these zones and the observed discrepancies in mechanical properties.


2006 ◽  
Vol 510-511 ◽  
pp. 330-333
Author(s):  
M.C. Curiel ◽  
Ho Sung Aum ◽  
Joaquín Lira-Olivares

Numerical simulations based on Finite Element Analysis (FEA) are widely used to predict and evaluate the forming parameters before performing the physical processes. In the sheet metal industry, there are basically two types of FE programs: the inverse (one-step) programs and the incremental programs. In the present paper, the forming process of the shield case piece (LTA260W1-L05) was optimized by performing simulations with both types of software. The main analyzed parameter was the blankholding force while the rest of the parameters were kept constant. The criteria used to determine the optimum value was based on the Forming Limit Diagram (FLD), fracture and wrinkling of the material, thickness distribution, and the principal strains obtained. It was found that the holding force during the forming process deeply affects the results, and a range of values was established in which the process is assumed to give a good quality piece.


Sign in / Sign up

Export Citation Format

Share Document