An analytical approach to the nonlinear buckling behavior of axially compressed auxetic-core cylindrical shells with carbon nanotube-reinforced coatings

Author(s):  
Le Ngoc Ly ◽  
Vu Minh Duc ◽  
Nguyen-Thoi Trung ◽  
Nguyen Thi Phuong ◽  
Dang Thuy Dong ◽  
...  

Auxetic materials are usually designed as cores for structures subject to high impulse loads. Furthermore, the lightweight and high load capacity of the auxetic core construction is also an important advantage even for structures subjected to static loads. The combination of auxetic core and face sheets made by the advanced composite materials is a solution to dramatically increase the load-carrying capacity of the structure. In this paper, a new design of auxetic-core cylindrical shells with carbon nanotube-reinforced coatings is presented. Additionally, the nonlinear buckling behaviors of auxetic-core cylindrical shells with carbon nanotube-reinforced coatings under axially compressive loads are investigated. Three distributed types of functionally graded carbon nanotube-reinforced coatings and the honeycomb lattice form of the auxetic core are investigated. The homogenization model for auxetic lattice structures is considered to constitute the formulations of stiffnesses of the core layer. The nonlinear basic formulations are formulated by using the geometrically nonlinear Donnell shell theory considering Pasternak’s foundation. The Galerkin procedure can be applied three times for three states of buckling behaviors, and the expressions of the compressive load-maximal deflection and compressive load-average end shortening postbuckling curves are achieved. The numerically obtained investigations present the significant effects of auxetic core, volume fraction, direction arrangement and distributed law of carbon nanotube, foundation stiffnesses, geometrical parameters of auxetic core and shell on the critical buckling load and postbuckling behavior of structures.

Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Vu Minh Duc

Nonlinear buckling and postbuckling of orthogonal carbon nanotube-reinforced composite (Orthogonal CNTRC) cylindrical shells subjected to axial compression in thermal environments surrounded by elastic foundation are presented in this paper. Two layers of shell are reinforced by carbon nanotube (CNT) in two orthogonal directions (longitudinal and circumferential directions). Based on Donnell’s shell theory with von Karman’s nonlinearity and the Galerkin method, the governing equations are established to obtain the critical buckling loads and postbuckling load-deflection curves. The large effects of CNT volume fraction, temperature change, elastic foundation and geometrical parameters of cylindrical shells on the buckling load and postbuckling behavior of Orthogonal CNTRC cylindrical shells are obtained.


2012 ◽  
Vol 34 (1) ◽  
pp. 27-44 ◽  
Author(s):  
Dao Van Dung ◽  
Le Kha Hoa

In this paper an approximate analytical solution to analyze the nonlinear buckling and postbuckling behavior of imperfect functionally graded panels with the Poisson's ratio also varying smoothly along the thickness is investigated. Based on the classical shell theory and von Karman's assumption of kinematic nonlinearity and applying Galerkin procedure, the equations for finding critical loads and load-deflection curves of cylindrical panel subjected to axial compressive load with two types boundary conditions, are given. Especially, the stiffness coefficients are analyzed in explicit form. Numerical results show various effects of the inhomogeneous parameter, dimensional parameter, boundary conditions on nonlinear stability of panel. An accuracy of present theoretical results is verified by the previous well-known results.


2019 ◽  
Vol 11 (05) ◽  
pp. 1950045 ◽  
Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Cao Van Doan ◽  
Nguyen Thoi Trung

A new analytical approach to investigate the nonlinear buckling and postbuckling of the sandwich functionally graded circular cylindrical shells reinforced by ring and stringer or spiral stiffeners subjected to external pressure is presented in this paper. By employing the Donnell shell theory, the geometrical nonlinearity in Von Kármán sense and developed Lekhnitskii’s smeared stiffener technique, the governing equations of sandwich functionally graded circular cylindrical shells are derived. Resulting equations are solved by applying the Galerkin method to obtain the explicit expression of critical buckling external pressure load and postbuckling load–deflection curve. Effects of spiral stiffeners, thermal environment, external pressure, and geometrical parameters on nonlinear buckling behavior of sandwich functionally graded circular cylindrical shells are shown in numerical results.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Zhi-Min Li ◽  
Zhong-Qin Lin ◽  
Guan-Long Chen

Nonlinear buckling and postbuckling behavior for a 3D braided composite cylindrical shell of finite length subjected to lateral pressure, hydrostatic pressure, or external liquid pressure in thermal environments have been presented in this paper. Based on a new micromacromechanical model, a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross section of the cylindrical shell. The material properties of the epoxy are expressed as a linear function of temperature. The governing equations are based on Reddy’s higher order shear deformation shell theory with a von Kármán–Donnell type of kinematic nonlinearity and including thermal effects. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect braided composite cylindrical shells with different values of geometric parameter and of fiber volume fraction in different cases of thermal environmental conditions. The results show that the shell has lower buckling pressures and postbuckling paths when the temperature-dependent properties are taken into account. The results reveal that the temperature changes, the fiber volume fraction, and the shell geometric parameter have a significant effect on the buckling pressure and postbuckling behavior of braided composite cylindrical shells.


Author(s):  
Nguyen Thi Phuong ◽  
Dang Thanh Luan ◽  
Vu Hoai Nam ◽  
Pham Thanh Hieu

A new nonlinear approach on the buckling and postbuckling of functionally graded orthogonal and/or spiral-stiffened circular cylindrical shells subjected to torsional loads is proposed in this paper. The shells skin are stiffened by eccentrically rings, stringers, and/or spiral stiffeners at the surface of shells assuming that the material distribution laws of shell skin and stiffeners are graded by two distribution models. Lekhnitskii’s smeared stiffeners technique is improved for spiral stiffeners with effect of thermal terms. This is the significant novelty and scientific contribution of this paper. Theoretical formulations were established by using the Donnell shell theory taking into account the geometrical nonlinearity of von Kármán. The obtained results investigated in numerical forms show effects of volume fraction exponent of shell skin and stiffeners, geometrical parameter and stiffeners on the torsional buckling, and postbuckling behavior of functionally graded cylindrical shells. Especially, very large effects of spiral stiffeners on torsional stability behavior are obtained in comparison with same quantity material of orthogonal stiffeners.


2013 ◽  
Vol 35 (4) ◽  
pp. 285-298 ◽  
Author(s):  
Dao Van Dung ◽  
Nguyen Thi Nga

In this paper, the nonlinear buckling and post-buckling of an eccentrically stiffened cylindrical shell made of functionally graded materials, surrounded by an elastic medium and subjected to mechanical compressive loads and external pressures are investigated by an analytical approach. The cylindrical shells are reinforced by longitudinal and circumferential stiffeners. The material properties of cylindrical shells are graded in the thickness direction according to a volume fraction power-law distribution. The nonlinear stability equations for stiffened cylindrical shells are derived by using the first order shear deformation theory and smeared stiffeners technique. Closed-form expressions for determining the buckling load and load-deflection curves are obtained. The effectiveness of stiffeners in enhancing the stability of cylindrical shells is shown. The effects of volume fraction indexes, material properties, geometrical parameters and foundation parameters are analyzed in detail.


2017 ◽  
Vol 52 (14) ◽  
pp. 1971-1986 ◽  
Author(s):  
T Vo-Duy ◽  
T Truong-Thi ◽  
V Ho-Huu ◽  
T Nguyen-Thoi

The paper presents an efficient numerical optimization approach to deal with the optimization problem for maximizing the fundamental frequency of laminated functionally graded carbon nanotube-reinforced composite quadrilateral plates. The proposed approach is a combination of the cell-based smoothed discrete shear gap method (CS-DSG3) for analyzing the first natural frequency of the functionally graded carbon nanotube reinforced composite plates and a global optimization algorithm, namely adaptive elitist differential evolution algorithm (aeDE), for solving the optimization problem. The design variables are the carbon nanotube orientation in the layers and constrained in the range of integer numbers belonging to [−900 900]. Several numerical examples are presented to investigate optimum design of quadrilateral laminated functionally graded carbon nanotube reinforced composite plates with various parameters such as carbon nanotube distribution, carbon nanotube volume fraction, boundary condition and number of layers.


Sign in / Sign up

Export Citation Format

Share Document