Toward co-optimization of renewable fuel blend production and combustion in ultra-high efficiency SI engines

2021 ◽  
pp. 146808742110409
Author(s):  
Patrick Burkardt ◽  
Tamara Ottenwälder ◽  
Andrea König ◽  
Jörn Viell ◽  
Alexander Mitsos ◽  
...  

The shift from fossil to renewable fuels presents an opportunity to tailor a fuel’s molecular structure and composition to the needs of advanced internal combustion engine concepts, while simultaneously aiming for economic and sustainable fuel production. We have recently proposed a method for computer-aided design of tailor-made fuels that integrates aspects of both product and production pathway design. The present paper sets out to sequentially combine that method with experimental investigation on a single cylinder research engine and model-based early-stage process evaluation to create, validate, and benchmark a rationally designed multi-component biofuel for highly boosted spark-ignition engines. To this end, the computer-aided design approach is applied to a network of possible fuel components and their production pathways. The resulting optimal four-component fuel EBCC (50 mol% ethanol, 21 mol% 2-butanone, 15 mol% cyclopentane, and 14 mol% cyclopentanone) is analyzed with regard to combustion performance and estimated fuel production cost. Variations of both the indicated mean effective pressure and the relative air/fuel ratio were performed on an engine equipped with a compression ratio of 14.7. EBCC achieves indicated efficiencies that are significantly higher than those of RON 102 gasoline fuel and comparable to those of pure 2-butanone, an extremely knock-resistant fuel identified in a previous round of model-based fuel design. Furthermore, a strong reduction in engine-out soot emissions is observed compared to RON 102 gasoline. Early-stage process evaluation shows EBCC to have lower estimated fuel production costs than 2-butanone. Production costs of pure ethanol, however, are estimated to be even lower, mainly due to lower plant investment costs and a synthesis pathway that does not require hydrogen. The paper concludes with a brief perspective on further integration of the proposed sequential approach with the goal of co-optimizing the production and combustion of renewable fuel blends.

2020 ◽  
Vol 32 (5) ◽  
pp. 691-705
Author(s):  
Nazanin Ansari ◽  
Sybille Krzywinski

PurposeThis paper aims to introduce a process chain spanning from scanned data to computer-aided engineering and further required simulations up to the subsequent production. This approach has the potential to reduce production costs and accelerate the procedure.Design/methodology/approachA parametric computer-aided design (CAD) model of the flyer wearing a wingsuit is created enabling easy changes in its posture and the wingsuit geometry. The objective is to track the influence of geometry changes in a timely manner for following simulation scenarios.FindingsAt the final stage, the two-dimensional (2D) pattern cuts were derived from the developed three-dimensional (3D) wingsuit, and the results were compared with the conventional ones used in the first stages of the wingsuit development.Originality/valueProposing a virtual development process chain is challenging; apart from the fact that the CAD construction of a wingsuit flyer – in itself posing a complicated task – is required at a very early stage of the procedure.


2022 ◽  
Vol 25 (6) ◽  
pp. 708-719
Author(s):  
D. A. Ishenin ◽  
A. S. Govorkov

The study aimed to develop an algorithm for computer-aided design (CAD) of working operations. A processing route for machining components was developed based on the criteria of production manufacturability, industrial data and a digital model of the product. The process of machining a workpiece was analysed using a method of theoretical separation. The machining process of a frame workpiece was used as a model. The identified formal parameters formed a basis for developing a CAD algorithm and a model of manufacturing route associated with the mechanical processing of a work-piece applying a condition-action rule, as well as mathematical logic. The research afforded a scheme for selecting process operations, given the manufacturability parameters of a product design. The concept of CAD algorithm was developed to design a production process of engineering products with given manufacturability parameters, including industrial data. The principle of forming a route and selecting a machining process was proposed. Several criteria of production manufacturability (labour intensity, consumption of materials, production costs) were selected to evaluate mechanical processing. A CAD algorithm for designing technological operations considering the parameters of manufacturability was developed. The algorithm was tested by manufacturing a frame workpiece. The developed algorithm can be used for reducing labour costs and development time, at the same time as improving the quality of production processes. The formalisation of process design is a crucial stage in digitalisation and automation of all production processes.


Author(s):  
Harley R. Myler ◽  
Avelino J. Gonzalez ◽  
Massood Towhidnejad

A number of automated reasoning systems find their basis in process control engineering. These programs are often model-based and use individual frames to represent component functionality. This representation scheme allows the process system to be dynamically monitored and controlled as the reasoning system need only simulate the behavior of the modeled system while comparing its behavior to real-time data. The knowledge acquisition task required for the construction of knowledge bases for these systems is formidable because of the necessity of accurately modeling hundreds of physical devices. We discuss a novel approach to the capture of this component knowledge entitled automated knowledge generation (AKG) that utilizes constraint mechanisms predicated on physical behavior of devices for the propagation of truth through the component model base. A basic objective has been to construct a complete knowledge base for a model-based reasoning system from information that resides in computer-aided design (CAD) databases. If CAD has been used in the design of a process control system, then structural information relating the components will be available and can be utilized for the knowledge acquisition function. Relaxation labeling is the constraint-satisfaction method used to resolve the functionality of the network of components. It is shown that the relaxation algorithm used is superior to simple translation schemes.


2005 ◽  
Vol 30 (1) ◽  
pp. 28-41 ◽  
Author(s):  
Núria Muro-Suñé ◽  
Rafiqul Gani ◽  
Gordon Bell ◽  
Ian Shirley

Author(s):  
Sung-Hwan Joo

The paper provides the method to develop the drafting and CAD standards for mechanical engineering program based on the systemic approach. The drafting has been used since the early stage of engineering. Lots of drafting technique has been developed and standardized. Recently, Computer Aided Design (CAD) software has been used widely in academia and industries too. Because of these reasons, every mechanical engineering program offers Drafting and CAD courses to its students. Some programs even have their own Drafting and CAD standards. However, it is not easy to develop the Drafting and CAD standard for whole program. It needs a careful plan to develop the standards. It needs to meet the certain requirements. Those requirements are 1) It needs to meet ASME Y14/ANSI Y14 standard as much as possible, 2) Students should be able to understand the standards and apply the rules to their own drawing and CAD models, 3) Any instructors should be able to give the proper feedback to students about their drawing using the standards, 4) Graduating students should be able to adopt the standard of their company easily. To meet these requirements, some preliminary work must be done. 1) Understanding of ASME Y14 is needed, 2) Expertise of one or more CAD software packages is required, 3) Students’ level of understanding the ASME Y14 standards needs to be measured, 4) Feedback from industries is required. Each steps of development of Drafting and CAD standards are explained using real example of students work.


1989 ◽  
Vol 111 (4) ◽  
pp. 570-580 ◽  
Author(s):  
T. S. Ku ◽  
B. Ravani

This paper presents an efficient algorithm for guidance of a convex rigid body in-between nonconvex polygonal objects in a Computer-Aided Design (CAD) environment. A shrinking procedure is used that separates the kinematic from the shape constraints by reducing the problem to that of guidance of a line segment in an expanded environment. A slicing technique together with an algorithm for decomposition of the interface channel between the nonconvex objects is used to generate the motion program for the line segment. The results can be applied to model based guidance of mobile robots or automatic motion planning for robot manipulators.


2010 ◽  
Vol 139-141 ◽  
pp. 1264-1267 ◽  
Author(s):  
Ru Sheng Lu ◽  
Bin Yao ◽  
Bo Shi Yao ◽  
Ming Hui Chen

On the basis of analyzing the geometric characteristics of the helical groove, the interfer -ometry method for its processing is discussed. This paper establishes a mathematical model of the helical groove, using differential geometry theory and numerical analysis. This research analyzes the impact of machine adjustment parameters (i.e. setting angle) on the geometry specification (i.e. Rake angle) of the helical groove. The simulation examples are done by CAD (Computer Aided Design), and the reasonable adjustment of machine parameters will be obtained by computer simulation and statistical analysis. This will reduce the time for design, the number of trial samples, and production costs. This study provides a precise 3D helical cutter model which can be used in areas such as finite element analysis (FEA) and virtual cutting tests.


Author(s):  
Xiantao Cai ◽  
Weidong Li ◽  
Fazhi He ◽  
Xiaoxia Li

Computer aided design (CAD) models reflect design goals, intentions, and functions so that they are the key intellectual properties of companies. In a Cloud manufacturing environment, how to effectively protect the sensitive feature information for a model owner while enabling the owner to flexibly share the rest of the CAD model with collaborators is an important yet challenging research issue. In this paper, an innovative partial encryption approach, which is able to represent a CAD model into the granularity of sharing information in order to address various collaboration scenarios and customized requirements from the model owner and collaborators, is presented. The approach is composed of a customized encryption algorithm for a CAD model, a key based customized authorization algorithm for collaborators to decrypt shared features in the model, and a customized geometric transformation method to support the effective protection model-based visualization of the model for collaboration. With this approach, a CAD model can be flexibly encrypted to realize partial sharing of features and safe protection of the rest of the model according to collaboration requirements. Meanwhile, during encryption and decryption, the CAD model is always manifold no matter which feature is encrypted or decrypted to ensure user friendliness, model validity, and robustness of the approach. A case study is used to verify and illustrate the effectiveness of the approach. This research is a new attempt to design a content-based and customized encryption approach applicable to CAD model-based collaboration in a Cloud manufacturing environment.


Sign in / Sign up

Export Citation Format

Share Document