scholarly journals Reactivity and kinetic studies of benzofuran hydrodeoxygenation over a Ni2P-O/MCM-41 catalyst

2019 ◽  
Vol 44 (4) ◽  
pp. 307-315 ◽  
Author(s):  
Xueya Dai ◽  
Hua Song ◽  
Hualin Song ◽  
Jing Gong ◽  
Feng Li ◽  
...  

A nickel phosphide hydrodeoxygenation catalyst (Ni2P-O/MCM-41) was prepared using a new synthetic method. The as-prepared catalyst was evaluated in the hydrodeoxygenation of benzofuran, and the effects of reaction temperature, pressure, and the H2/liquid ratio were investigated. A pseudo first-order model was employed to describe the reaction kinetics of benzofuran hydrodeoxygenation over the Ni2P-O/MCM-41 catalyst. The reaction rate constants ( k1– k5) at different temperatures were determined according to this model. At 533 K, the conversion of 2-ethylphenol in to ethylbenzene began to increase dramatically, and the yield of O-free product, ethylcyclohexane, started to increase rapidly. At 573 K, 3.0 MPa, and a H2/liquid ratio of 500 (V/V), the conversion of benzofuran over Ni2P-O/MCM-41 reached 93%, and the combined yield of O-free products was 91%. Contact time analysis indicated that demethylation was not favored over the Ni2P-O/MCM-41 catalyst.

2011 ◽  
Vol 383-390 ◽  
pp. 2945-2950 ◽  
Author(s):  
Jie Zhang ◽  
Shi Long He ◽  
Mei Feng Hou ◽  
Li Ping Wang ◽  
Li Jiang Tian

The kinetics of TBBPA degradation by ozonation in semi-batch reactor was studied. The reaction rate constants of TBBPA with O3 and •OH were measured by means of direct ozone attack and competition kinetics, and the values of which were 6.10 l/(mol•s), 4.8×109 l/(mol•s), respectively. Results of kinetic studies showed that TBBPA degradation by ozonation under the different conditions tested followed the pseudo-first-order. The values of apparent rate constant of TBBPA degradation increased with the increase of ozone dosage and pH, but decreased with the increase of initial TBBPA concentration.


2016 ◽  
Vol 79 (9) ◽  
pp. 1482-1489
Author(s):  
HAYRIYE BOZKURT ◽  
JAIRUS R. D. DAVID ◽  
RYAN J. TALLEY ◽  
D. SCOTT LINEBACK ◽  
P. MICHAEL DAVIDSON

ABSTRACT Sporolactobacillus species have been occasionally isolated from spoiled foods and environmental sources. Thus, food processors should be aware of their potential presence and characteristics. In this study, the heat resistance and influence of the growth and recovery media on apparent heat resistance of Sporolactobacillus nakayamae spores were studied and described mathematically. For each medium, survivor curves and thermal death curves were generated for different treatment times (0 to 25 min) at different temperatures (70, 75, and 80°C) and Weibull and first-order models were compared. Thermal inactivation data for S. nakayamae spores varied widely depending on the media formulations used, with glucose yeast peptone consistently yielding the highest D-values for the three temperatures tested. For this same medium, the D-values ranged from 25.24 ± 1.57 to 3.45 ± 0.27 min for the first-order model and from 24.18 ± 0.62 to 3.50 ± 0.24 min for the Weibull model at 70 and 80°C, respectively. The z-values determined for S. nakayamae spores were 11.91 ± 0.29°C for the Weibull model and 11.58 ± 0.43°C for the first-order model. The calculated activation energy was 200.5 ± 7.3 kJ/mol for the first-order model and 192.8 ± 22.1 kJ/mol for the Weibull model. The Weibull model consistently produced the best fit for all the survival curves. This study provides novel and precise information on thermal inactivation kinetics of S. nakayamae spores that will enable reliable thermal process calculations for eliminating this spoilage bacterium.


2020 ◽  
Vol 22 (2) ◽  
pp. 67-72
Author(s):  
Justyna Miłek

AbstractThe thermal stability of enzyme-based biosensors is crucial in economic feasibility. In this study, thermal deactivation profiles of catalase Aspergillus niger were obtained at different temperatures in the range of 35°C to 70°C. It has been shown that the thermal deactivation of catalase Aspergillus niger follows the first-order model. The half-life time t1/2 of catalase Aspergillus niger at pH 7.0 and the temperature of 35°C and 70°C were 197 h and 1.3 h respectively. Additionally, t1/2 of catalase Aspergillus niger at the temperature of 5°C was calculated 58 months. Thermodynamic parameters the change in enthalpy ΔH*, the change in entropy ΔS* and the change Gibbs free energy ΔG* for the deactivation of catalase at different temperatures in the range of 35°C to 70°C were estimated. Catalase Aspergillus niger is predisposed to be used in biosensors by thermodynamics parameters obtained.


2019 ◽  
Vol 9 (5) ◽  
pp. 337-346
Author(s):  
Imane Lebkiri ◽  
Brahim Abbou ◽  
Lamya Kadiri ◽  
Abdelkarim Ouass ◽  
Youness Essaadaoui ◽  
...  

The present work aims the elimination of an organic dye Methylene Blue (MB) by adsorption on the polyacrylamide (PAAM) hydrogel. Several experiments series were then carried out in order to study the influence on the adsorption capacity of certain parameters such as the mass of the adsorbent, the pH, the contact time, the initial dye concentration and the temperature. The maximal capacity is 1620 mg/g it was obtained at T = 25°C, pH = 6, [BM] = 200 ppm and 0.013g of the adsorbent. The adsorption kinetics of the dye on the support is well described by the first-order model. The adsorption isotherms of the adsorbent/adsorbate systems studied are satisfactorily described by the Langmuir mathematical model. On the other hand, the thermodynamic study revealed that adsorption is spontaneous and endothermic.


2019 ◽  
Vol 44 (4) ◽  
pp. 300-306
Author(s):  
Joanna Drzeżdżon ◽  
Agnieszka Piotrowska-Kirschling ◽  
Lech Chmurzyński ◽  
Dagmara Jacewicz

The kinetics of the aquation reaction of the [VO(ida)(bipy)]·2H2O (VO(ida)(bipy)) complex (where ida = iminodiacetate anion and bipy = 2,2’-bipyridine) promoted by [Fe(H2O)6]3+ ions were investigated in aqueous solutions. Spectrophotometric studies were carried out at different temperatures in the range of 293.15–313.15 K. The concentration of the [Fe(H2O)6]3+ (Fe3+) ions was kept within the range of 2 × 10–4 to 8 × 10–4 mol L–1, and the concentration of VO(ida)(bipy) was 1 × 10–3 mol L–1. The values of the observable reaction rate constants were calculated based on the Glint computer program. Furthermore, the mechanism for the aquation of VO(ida)(bipy), induced by Fe(III) ions, has been proposed.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Minu Singh

The kinetics of oxidation of fructose by N-bromosuccinimide in acidic medium in the absence and presence of cationic, anionic, and nonionic surfactants has been measured iodometrically under pseudo-first-order condition. The oxidation kinetics of fructose by N-bromosuccinimide shows a first-order dependence on N-bromosuccinimide, fractional order dependence on fructose, and negative fractional order dependence on sulfuric acid. The kinetics is treated using Berezin’s micellar model that was previously used for the catalysis and inhibition of the reaction. The determined stoichiometric ratio was 1 : 1 (fructose : N-bromosuccinimide). The variation of Hg(OAC)2 and succinimide (reaction product) has insignificant effect on reaction rate. Effects of surfactants, added acrylonitrile, added salts, and solvent composition variation have been studied. Activation parameters for the reaction have been evaluated from Arrhenius plot by studying the reaction at different temperatures. The rate law has been derived on the basis of obtained data. A plausible mechanism has been proposed from the results of kinetic studies, reaction stoichiometry, and product analysis.


2008 ◽  
Vol 32 (2) ◽  
pp. 533-540 ◽  
Author(s):  
Vladimir Antônio Silva ◽  
Giuliano Marchi ◽  
Luiz Roberto Guimarães Guilherme ◽  
José Maria de Lima ◽  
Francisco Dias Nogueira ◽  
...  

Kinetic studies on soil potassium release can contribute to a better understanding of K availability to plants. This study was conducted to evaluate K release rates from the whole soil, clay, silt, and sand fractions of B-horizon samples of a basalt-derived Oxisol and a sienite-derived Ultisol, both representative soils from coffee regions of Minas Gerais State, Brazil. Potassium was extracted from each fraction after eight different shaking time periods (0-665 h) with either 0.001 mol L-1 citrate or oxalate at a 1:10 solid:solution ratio. First-order, Elovich, zero-order, and parabolic diffusion equations were used to parameterize the time dependence of K release. For the Oxisol, the first-order equation fitted best to the experimental data of K release, with similar rates for all fractions and independent of the presence of citrate or oxalate in the extractant solution. For all studied Ultisol fractions, in which K release rates increased when extractions were performed with citrate solution, the Elovich model described K release kinetics most adequately. The highest potassium release rate of the Ultisol silt fraction was probably due to the transference of "non-exchangeable" K to the extractant solution, whereas in the Oxisol exchangeable potassium represented the main K source in all studied fractions.


Author(s):  
Seplapatty Kalimuthu Periyasamy ◽  
H. Satham Hussain ◽  
R. Manikandan

The kinetics of Oxidation of Phenol and aniline by quinolinium Chlorochromate (QCC) in aqueous acetic acid medium leads to the formation of quinone and azobenzene respectively. The reactions are first order with respect to both Phenol and aniline. The reaction is first order with respect to quinolinium chlorochromate (QCC) and is catalyzed by hydrogen ion. The hydrogen-ion dependence has the form: kobs = a+b [H+]. The rate of oxidation decreases with increasing dielectric constant of solvent, indicating the presence of an ion-dipole interaction. The reaction does not induced the polymerization of acrylonitrile. The retardation of the rate by the addition of Mn2+ ions confirms that a two electron transfer process is involved in the reaction. The reaction rates have been determined at different temperatures and the activation parameters have been calculated. From the above observations kinetic results a probable mechanism have been proposed.


2017 ◽  
Vol 23 (4) ◽  
pp. 495-506 ◽  
Author(s):  
Larissa Falleiros ◽  
Bruna Cabral ◽  
Janaína Fischer ◽  
Carla Guidini ◽  
Vicelma Cardoso ◽  
...  

The immobilization and stabilization of Aspergillus oryzae ?-galactosidase on Duolite??A568 was achieved using a combination of physical adsorption, incubation step in buffer at pH 9.0 and cross-linking with glutaraldehyde and in this sequence promoted a 44% increase in enzymatic activity as compared with the biocatalyst obtained after a two-step immobilization process (adsorption and cross-linking). The stability of the biocatalyst obtained by three-step immobilization process (adsorption, incubation in buffer at pH 9.0 and cross-linking) was higher than that obtained by two-steps (adsorption and cross-linking) and for free enzyme in relation to pH, storage and reusability. The immobilized biocatalyst was characterized with respect to thermal stability in the range 55-65 ?C. The kinetics of thermal deactivation was well described by the first-order model, which resulted in the immobilized biocatalyst activation energy of thermal deactivation of 71.03 kcal/mol and 5.48 h half-life at 55.0 ?C.


1948 ◽  
Vol 26b (2) ◽  
pp. 175-180 ◽  
Author(s):  
C. A. Winkler ◽  
A. W. Hay ◽  
A. L. Thompson

The principal reaction of methyl-bis-β-chloroethylamine in methanol is dimerization, which results in one chlorine from each molecule becoming ionic, but this is accompanied by slight alcoholysis. The rate-controlling step is believed to be the first order formation of an ethylenimonium ion which reacts rapidly with one of its kind to form dimer. The rate expression as calculated from initial rate constants is k (initial) = 4.0 × 1013e−19600/RThr.−1.


Sign in / Sign up

Export Citation Format

Share Document