scholarly journals Do Relatives With Greater Reproductive Potential Get Help First?: A Test of the Inclusive Fitness Explanation of Kin Altruism

2019 ◽  
Vol 17 (3) ◽  
pp. 147470491986709
Author(s):  
Jordan Schriver ◽  
W.Q. Elaine Perunovic ◽  
Kyle Brymer ◽  
Timothy Hachey

According to inclusive fitness theory, people are more willing to help those they are genetically related to because relatives share a kin altruism gene and are able to pass it along. We tested this theory by examining the effect of reproductive potential on altruism. Participants read hypothetical scenarios and chose between cousins (Studies 1 and 2) and cousins and friends (Study 3) to help with mundane chores or a life-or-death rescue. In life-or-death situations, participants were more willing to help a cousin preparing to conceive rather than adopt a child (Study 1) and a cousin with high rather than low chance of reproducing (Studies 2 and 3). Patterns in the mundane condition were less consistent. Emotional closeness also contributed to helping intentions (Studies 1 and 2). By experimentally manipulating reproductive potential while controlling for genetic relatedness and emotional closeness, we provide a demonstration of the direct causal effects of reproductive potential on helping intentions, supporting the inclusive fitness explanation of kin altruism.

2017 ◽  
Vol 284 (1860) ◽  
pp. 20170441 ◽  
Author(s):  
Sally Le Page ◽  
Irem Sepil ◽  
Ewan Flintham ◽  
Tommaso Pizzari ◽  
Pau Carazo ◽  
...  

Males compete over mating and fertilization, and often harm females in the process. Inclusive fitness theory predicts that increasing relatedness within groups of males may relax competition and discourage male harm of females as males gain indirect benefits. Recent studies in Drosophila melanogaster are consistent with these predictions, and have found that within-group male relatedness increases female fitness, though others have found no effects. Importantly, these studies did not fully disentangle male genetic relatedness from larval familiarity, so the extent to which modulation of harm to females is explained by male familiarity remains unclear. Here we performed a fully factorial design, isolating the effects of male relatedness and larval familiarity on female harm. While we found no differences in male courtship or aggression, there was a significant interaction between male genetic relatedness and familiarity on female reproduction and survival. Relatedness among males increased female lifespan, reproductive lifespan and overall reproductive success, but only when males were familiar. By showing that both male relatedness and larval familiarity are required to modulate female harm, these findings reconcile previous studies, shedding light on the potential role of indirect fitness effects on sexual conflict and the mechanisms underpinning kin recognition in fly populations.


2021 ◽  
Vol 19 (2) ◽  
pp. 147470492110117
Author(s):  
Saeed Rezvani Nejad ◽  
Ahmad Borjali ◽  
Mahdi Khanjani ◽  
Daniel J. Kruger

Evolutionary definitions of altruism are only concerned with reproductive consequences and not motives or other psychological mechanisms, making them ideal for generalization to all forms of organisms. Hamilton’s inclusive fitness theory explains altruistic behavior toward genetic relatives and has generated extensive empirical support. Trivers’ theory of reciprocal altruism helps explain patterns of helping among non-kin, and other research has demonstrated that human helping intentions follow fitness consequences from age-based reproductive value on altruism. The current study examines a novel psychological factor, belief in the afterlife, which may influence altruistic helping intentions. Belief in the afterlife was incorporated into a previous study design assessing the effects of a target’s genetic relatedness and age-based reproductive value. The influences of inclusive fitness and target age were reproduced in a non-Western sample of participants ( N = 300) in Iran. Belief in the afterlife predicted the overall confidence of risking one’s life to save another across all targets, and also moderated the effects of genetic relatedness and target age. Rather than promoting altruism equitably or advantaging those favored by adaptive tendencies, higher belief in an afterlife aligned with these tendencies in promoting further favoritism toward close kin and younger targets with higher reproductive value.


2021 ◽  
Author(s):  
Adrian Stencel ◽  
Javier Suárez

AbstractAn understanding of the factors behind the evolution of multicellularity is one of today’s frontiers in evolutionary biology. This is because multicellular organisms are made of one subset of cells with the capacity to transmit genes to the next generation (germline cells) and another subset responsible for maintaining the functionality of the organism, but incapable of transmitting genes to the next generation (somatic cells). The question arises: why do somatic cells sacrifice their lives for the sake of germline cells? How is germ/soma separation maintained? One conventional answer refers to inclusive fitness theory, according to which somatic cells sacrifice themselves altruistically, because in so doing they enhance the transmission of their genes by virtue of their genetic relatedness to germline cells. In the present article we will argue that this explanation ignores the key role of policing mechanisms in maintaining the germ/soma divide. Based on the pervasiveness of the latter, we argue that the role of altruistic mechanisms in the evolution of multicellularity is limited and that our understanding of this evolution must be enriched through the consideration of coercion mechanisms.


Author(s):  
Samir Okasha

Inclusive fitness theory, originally due to W. D. Hamilton, is a popular approach to the study of social evolution, but shrouded in controversy. The theory contains two distinct aspects: Hamilton’s rule (rB > C); and the idea that individuals will behave as if trying to maximize their inclusive fitness in social encounters. These two aspects of the theory are logically separable but often run together. A generalized version of Hamilton’s rule can be formulated that is always true, though whether it is causally meaningful is debatable. However, the individual maximization claim only holds true if the payoffs from the social encounter are additive. The notion that inclusive fitness is the ‘goal’ of individuals’ social behaviour is less robust than some of its advocates acknowledge.


Genetics ◽  
2007 ◽  
Vol 176 (3) ◽  
pp. 1375-1380
Author(s):  
Lee Alan Dugatkin

2014 ◽  
Vol 369 (1642) ◽  
pp. 20130365 ◽  
Author(s):  
Helen C. Leggett ◽  
Sam P. Brown ◽  
Sarah E. Reece

One of the most striking facts about parasites and microbial pathogens that has emerged in the fields of social evolution and disease ecology in the past few decades is that these simple organisms have complex social lives, indulging in a variety of cooperative, communicative and coordinated behaviours. These organisms have provided elegant experimental tests of the importance of relatedness, kin discrimination, cooperation and competition, in driving the evolution of social strategies. Here, we briefly review the social behaviours of parasites and microbial pathogens, including their contributions to virulence, and outline how inclusive fitness theory has helped to explain their evolution. We then take a mechanistically inspired ‘bottom-up’ approach, discussing how key aspects of the ways in which parasites and pathogens exploit hosts, namely public goods, mobile elements, phenotypic plasticity, spatial structure and multi-species interactions, contribute to the emergent properties of virulence and transmission. We argue that unravelling the complexities of within-host ecology is interesting in its own right, and also needs to be better incorporated into theoretical evolution studies if social behaviours are to be understood and used to control the spread and severity of infectious diseases.


2018 ◽  
Author(s):  
Jan Antfolk ◽  
Debra Lieberman ◽  
Christopher Harju ◽  
Anna Albrecht ◽  
Andreas Mokros ◽  
...  

Due to the intense selection pressure against inbreeding, humans are expected to possess psychological adaptations that regulate mate choice and avoid inbreeding. From a gene’s-eye perspective, there is little difference in the evolutionary costs between situations where an individual him/herself is participating in inbreeding and inbreeding among other close relatives. The difference is merely quantitative, as fitness can be compromised via both routes. The question is whether humans are sensitive to the direct as well as indirect costs of inbreeding. Using responses from a large population-based sample (27,364 responses from 2,353 participants), we found that human motivations to avoid inbreeding closely track the theoretical costs of inbreeding as predicted by inclusive-fitness theory. Participants were asked to select in a forced choice paradigm, which of two acts of inbreeding with actual family members they would want to avoid most. We found that the estimated fitness costs explained 83.6% of participant choices. Importantly, fitness costs explained choices also when the self was not involved. We conclude that humans intuit the indirect fitness costs of mating decisions made by close family members and that psychological inbreeding avoidance mechanisms extend beyond self-regulation.


Author(s):  
James A.R. Marshall

This book has examined the genesis, the logic, and the generality of social evolution theory. In particular, it has presented evolutionary explanations of the many social behaviors we observe in the natural world by showing that William D. Hamilton's inclusive fitness theory provides the necessary generalization of classical Darwin–Wallace–Fisher fitness. This concluding chapter discusses the limitations of the analyses presented in this book and assesses the empirical support for inclusive fitness theory, focusing on microbial altruism, help in cooperative breeders, reproductive restraint in eusocial species, and the evolution of eusociality and cooperative breeding. It also considers more advanced topics in social evolution theory, including sex allocation, genetic kin recognition, spite, and the evolution of organismality. Finally, it reviews theoretical approaches to studying social evolution other than replicator dynamics and the Price equation, such as population genetics, class-structured populations, and maximization approaches.


2018 ◽  
Vol 16 (4) ◽  
pp. 147470491880886
Author(s):  
Carlos Hernández Blasi ◽  
Laura Mondéjar

The context of a famous novel by Milan Kundera ( Immortality) suggests that when faced with a life-or-death situation, every woman would prefer to save her child than her husband, left hanging whether every man would do the same. We labeled this as the Kundera hypothesis, and the purpose of this study was to test it empirically as we believe it raises a thought-provoking question in evolutionary terms. Specifically, 197 college students (92 women) were presented a questionnaire where they had to make different decisions about four dilemmas about who to save (their mate or their offspring) in two hypothetical life-or-death situations: a home fire and a car crash. These dilemmas involved two different mate ages (a 25- or a 40-year-old mate) and two offspring ages (1- or a 6-year-old child). For comparative purposes, we also included complementary life-or-death dilemmas on both a sibling and an offspring, and a sibling and a cousin. The results generally supported the Kundera hypothesis: Although the majority of men and women made the decision to save their offspring instead of their mate, about 18% of men on average (unlike the 5% of women) consistently decided to save their mate across the four dilemmas in the two life-or-death situations. These data were interpreted with reference to Hamilton’s inclusive fitness theory, the preferential role of women as kin keepers, and the evolution of altruism toward friends and mates.


2017 ◽  
Vol 284 (1867) ◽  
pp. 20171984 ◽  
Author(s):  
Samuel J. Lymbery ◽  
Leigh W. Simmons

Sexual conflict occurs when reproductive partners have different fitness optima, and can lead to the evolution of traits in one sex that inflict fitness costs on the opposite sex. Recently, it has been proposed that antagonism by males towards females should be reduced when they compete with relatives, because reducing the future productivity of a female would result in an indirect fitness cost for a harmful male. We tested this prediction in the seed beetle Callosobruchus maculatus , the males of which harm females with genital spines and pre-copulatory harassment. We compared lifespan, lifetime egg production and lifetime offspring production among females housed with groups of males that varied in their familiarity and relatedness. Females produced significantly more eggs and offspring when grouped with males who were both related and familiar to each other. There was no effect of male relatedness or familiarity on female lifespan. Our results suggest that males plastically adjust their harmfulness towards females in response to changes in inclusive fitness payoffs, and that in this species both genetic relatedness and social familiarity mediate this effect.


Sign in / Sign up

Export Citation Format

Share Document