scholarly journals Characterizing mechanical change in metals using amplitude-modulated diffuse ultrasound

2020 ◽  
Vol 19 (6) ◽  
pp. 1894-1904
Author(s):  
Fan Xie ◽  
Yuxiang Zhang ◽  
Eric Larose ◽  
Aroune Duclos ◽  
Su Chen ◽  
...  

In this article, we present an ultrasonic method based on diffuse ultrasound with successive excitation amplitudes. This method provides amplitude-dependent parameters of diffuse ultrasound using coda wave interferometry, and these parameters can be used to characterize mechanical change in metallic materials. The localized mechanical change caused by an instantaneous 400°C thermal shock in a meter-scale aluminum alloy slab was characterized by measuring the diffuse-wave velocity change and decorrelation coefficient as functions of the excitation amplitude. The potential mechanisms and spatial distribution that cause the observed amplitude-dependent diffuse waveform modification are discussed. Combining the method presented here with complementary approaches will enhance the ability to nondestructively detect early-stage damage in the laboratory or in the field.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4033
Author(s):  
Claudia Finger ◽  
Leslie Saydak ◽  
Giao Vu ◽  
Jithender J. Timothy ◽  
Günther Meschke ◽  
...  

Ultrasonic measurements are used in civil engineering for structural health monitoring of concrete infrastructures. The late portion of the ultrasonic wavefield, the coda, is sensitive to small changes in the elastic moduli of the material. Coda Wave Interferometry (CWI) correlates these small changes in the coda with the wavefield recorded in intact, or unperturbed, concrete specimen to reveal the amount of velocity change that occurred. CWI has the potential to detect localized damages and global velocity reductions alike. In this study, the sensitivity of CWI to different types of concrete mesostructures and their damage levels is investigated numerically. Realistic numerical concrete models of concrete specimen are generated, and damage evolution is simulated using the discrete element method. In the virtual concrete lab, the simulated ultrasonic wavefield is propagated from one transducer using a realistic source signal and recorded at a second transducer. Different damage scenarios reveal a different slope in the decorrelation of waveforms with the observed reduction in velocities in the material. Finally, the impact and possible generalizations of the findings are discussed, and recommendations are given for a potential application of CWI in concrete at structural scale.


2014 ◽  
Vol 119 (3) ◽  
pp. 2199-2214 ◽  
Author(s):  
A. J. Hotovec‐Ellis ◽  
J. Gomberg ◽  
J. E. Vidale ◽  
K. C. Creager

2018 ◽  
Vol 18 (2) ◽  
pp. 602-609 ◽  
Author(s):  
Fan Xie ◽  
Weibin Li ◽  
Yuxiang Zhang

Diffuse ultrasound is highly sensitive to changes in mechanical properties. Based on the coda wave interferometry analysis, we investigate the environmental temperature-induced wave velocity variations in high-manganese steels with plastic deformations by diffuse ultrasound. We observe the velocity changes in the materials at test with [Formula: see text] relative resolution. We propose the temperature-dependent coefficient as the key parameter for damage assessment in the specimens with different plastic deformations. The results show that the early-stage damage caused by plastic deformation in the specimens at test varying from 6% to 14% are successfully characterized by temperature-dependent coefficients in the absence of external mechanical load. The theoretical analysis on the sensitivity of the temperature-dependent coefficient to plastic deformation as well as the potential on-site application is discussed in this article.


2019 ◽  
Vol 145 (3) ◽  
pp. 1756-1756
Author(s):  
Richard Weaver ◽  
John Y. Yoritomo ◽  
John Popovics ◽  
James Bittner

Author(s):  
Claudia Finger ◽  
Leslie Saydak ◽  
Giao Vu ◽  
Jithender J. Timothy ◽  
Günther Meschke ◽  
...  

Ultrasonic measurements are used in civil engineering for structural health monitoring of concrete infrastructures. The late portion of the ultrasonic wavefield, the coda, is sensitive to small changes in the elastic moduli of the material. Coda Wave Interferometry (CWI) correlates these small changes in the coda with the wavefield recorded in intact, or unperturbed, concrete specimen to reveal the amount of velocity change that occurred. CWI has the potential to detect localised damages and global velocity reductions alike. In this study, the sensitivity of CWI to different types of concrete mesostructures and their damage levels is investigated numerically. Realistic numerical concrete models of concrete specimen are generated and damage evolution is simulated using the discrete element method. In the virtual concrete lab, the simulated ultrasonic wavefield is propagated from one transducer using a realistic source signal and recorded at a second transducer. Different damage scenarios reveal a different slope in the decorrelation of waveforms with the observed reduction in velocities in the material. Finally, the impact and possible generalizations of the findings are discussed and recommendations are given for a potential application of CWI in concrete at structural scale.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1986 ◽  
Author(s):  
Xin Wang ◽  
Joyraj Chakraborty ◽  
Antoine Bassil ◽  
Ernst Niederleithinger

The enlargement of the cracks outside the permitted dimension is one of the main causes for the reduction of service life of Reinforced Concrete (RC) structures. Cracks can develop due to many causes such as dynamic or static load. When tensile stress exceeds the tensile strength of RC, cracks appear. Traditional techniques have limitations in early stage damage detection and localisation, especially on large-scale structures. The ultrasonic Coda Wave Interferometry (CWI) method using diffuse waves is one of the most promising methods to detect subtle changes in heterogeneous materials, such as concrete. In this paper, the assessment of the CWI method applied for multiple cracks opening detection on two specimens based on four-point bending test is presented. Both beams were monitored using a limited number of embedded Ultrasonic (US) transducers as well as other transducers and techniques (e.g., Digital Image Correlation (DIC), LVDT sensors, strain gauges, and Fiber Optics Sensor (FOS)). Results show that strain change and crack formation are successfully and efficiently detected by CWI method even earlier than by the other techniques. The CWI technique using embedded US transducers is undoubtedly a feasible, efficient, and promising method for long-term monitoring on real infrastructure.


2013 ◽  
Author(s):  
Virginie D'Hour ◽  
Aderson F. do Nascimento ◽  
Heleno C. de Lima Neto ◽  
Joaquim M. Ferreira ◽  
Martin Schimmel

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 440
Author(s):  
Chunguang Xu ◽  
Lei He ◽  
Shiyuan Zhou ◽  
Dingguo Xiao ◽  
Pengzhi Ma

During the service or external loading of the surface coating, the damage accumulation may develop in the coating or at the interface between the substrate and the coating, but it is difficult to measure directly in the early stage, so the acoustic nonlinear parameters are used as the early damage index of the coating. In this paper, the nonlinear wave motion equation is solved by the perturbation method and the new relationship between the relative ratio of second-order parameter and third-order parameter was derived. The nonlinear ultrasonic testing system is used to detect received signals during tensile testing of for the specimen with Al2O3 coatings. It is found that when the stress is less than 260 MPa, the appearance of the coating has no obvious change, but the nonlinear coefficients measured by the experiment increase with the increase of the tensile stress. By comparing the curves of nonlinear coefficients and stress respectively, the fluctuation of curves the second-order nonlinear coefficient A2 and the relative nonlinear coefficient β′ to stress is relatively small, and close to the linear relationship with the tensile stress, which indicates that the two parameters of the specimen with Al2O3 coatings are more sensitive to the bonding conditions, and can be used as an evaluation method to track the coating damage.


Sign in / Sign up

Export Citation Format

Share Document