Mixtures of Recycled Milk Pouches with a Virgin LDPE-LLDPE Blend

2005 ◽  
Vol 21 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Arup Choudhury ◽  
Mandira Mukherjee ◽  
Basudam Adhikari

The present investigation deals with the viability of the use of recycled milk pouch material, which is a 50:50 mixture of LDPE and LLDPE, and the scope for improvement of its properties by combining it with virgin LDPE-LLDPE (50/50). Melt flow index (MFI), rheological properties, thermal and mechanical properties of the pure materials and their formulated blends containing recycled milk pouches were studied. The properties of the recycled materials were not as satisfactory as those of the corresponding virgin materials. But a significant improvement in viscosity, crystallinity, tensile strength and elongation at break of the recycled LDPE-LLDPE material was achieved by blending it with the corresponding virgin LDPE-LLDPE blend.

2018 ◽  
Vol 56 (2A) ◽  
pp. 56-62
Author(s):  
Nguyen Van Khoi

In this article, we investigated effect of carrier resin ratio and anti-oxidation additives content on properties of anti-oxidant additives Masterbatchs (MBs). The characteristics were measured by: melt flow index (MFI), morphology (SEM), tensile strength and elongation at break. The results indicated that: increasing LLDPE content in carrier resin led to decreasing mechanical properties, MFI weren’t uniform in MBs. With 80/20 of LDPE/LLDPE ratio, the tensile strength and elongation at break values were highest (21.0 MPa, 680.5 %). In addition, when increased anti-oxidant additives content, mechanical properties increased to upper limit value, then decreased. With 25 wt.% of anti-oxidant additives, the tensile strength and elongation at break values were highest (21.0 MPa, 654.7 %), MFI were uniform in MBs (12 g/10 m). SEM images were evidence of greatly distribution in sample containing 25 wt.% additives. Consequently, the 90/10 of LDPE/LLDPE ratio, 25 wt.% anti-oxidant additives were selected to prepare MBs. 


2013 ◽  
Vol 701 ◽  
pp. 42-46 ◽  
Author(s):  
Abd Aziz Noor Zuhaira ◽  
Rahmah Mohamed

This research is to identify the difference in melt flow and mechanical properties in hybrid composites between kenaf and rice husk that each of the filler was compounded with composite material of calcium carbonate (CaCO3) and high density polyethylene (HDPE) in different loading amount. Different filler loading up to 30 parts of kenaf fibers and rice husk particulate were mixed with the fixed 30% amount of CaCO3. Compounded hybrid composite were prepared and tested for melt flow index, tensile and impact strength. Addition of both fillers had decreased melt flow index (MFI). MFI of rice husk/CaCO3 was higher than kenaf/CaCO3 in HDPE composites. Tensile strength, elongation at break and impact properties of both hybrid composites had decreased with increasing filler content. Tensile strength of kenaf/CaCO3 was higher than rice husk/CaCO3 due to intrinsic fiber structure of kenaf which has some reinforcing effect compared to rice husk. While, impact strength of rice husk/CaCO3 was improved with addition of filler but drastically decrease as the rice husk content were increased up to 30% due to high silica content in rice husk. The Youngs Modulus was increased with addition of natural fibers in CaCO3/HDPE composite.


Author(s):  
С. В. Сайтарли ◽  
В. П. Плаван ◽  
Л. С. Дзюбенко ◽  
О. С. Керенівський ◽  
Д. М. Євдокименко

To develop filled polymer compositions based on polypropylene with different contents of calcite concentrate as a filler and the newest polyolefin elastomer as a modifier; to define the influence of the compositions on their rheological and physico-mechanical properties for production injection molded goods. The values of viscosity, melt flow index, tensile strength, elongation, and impact strength and frost resistance of the compositions depending on their composition are determined by standard methods. The influence of calcite concentrate as a filler and polyolefin elastomer as a modifier on the rheological and mechanical properties of compositions has been determined. With an increase in the amount of filler the physical and mechanical properties of the filled compositions are reduce that is offset by introducing the newest polyolefin elastomer as a modifier in amount of 5 wt. %. Addition of 5 wt. % of polyolefin elastomer in the filled composition gives them frost resistance, wherein the impact strength is higher than for compositions without the modifier even after freezing for 30 days at -18°С. It has been determined that adding of the filler does not increase the viscosity of the compositions, which contradicts the traditional behavior of filled systems. The addition of 5 wt. % of polyolefin elastomer to the filled compositions with calcite concentrate up to 20 wt.% does not change the tensile strength of the compositions which is 24 MPa, but increases elongation by 2 times, impact strength by an average of 8,5 % and frost resistance after freezing compositions at -18 °C for 30 days by an average of 12,6 %. The research results of rheological and physic-mechanical properties allow choosing the rational composition to achieve the desired characteristics of the polymer material for production goods by injection molding. Melt flow index of the compositions increases with increasing amount of filler to 50 wt. %. which does not increase the production costs of the injection molding process in comparison with unfilled compositions.


2015 ◽  
Vol 1107 ◽  
pp. 125-130 ◽  
Author(s):  
Muhammad Safwan Hamzah ◽  
M. Mariatti ◽  
M. Kamarol

In this article, we report three nanofillers filled polymer composite systems. Nanofillers composed of alumina, titania and organoclay were embedded separately in 50% polypropylene (PP) and 50% ethylene propylene diene monomer (EPDM) blends. The nanocomposites were prepared using an internal mixer and were molded using a compression mold to form test samples. Effect of filler loading (2, 4, 6, and 8 vol.%) on the tensile properties and melt flow index (MFI) were determined. The mechanical properties of alumina are the highest compared to titania and organoclay. Alumina and organoclay shows an ascending trend in tensile strength with the increase of nanofiller loading. In contrast, the increment of titania filler loading reduces the tensile strength of the nanocomposites. The Young's modulus of the nanocomposites increases with the addition of filler loading. Elongation at break of the nanocomposites shows a descending trend with the addition of filler loading. The addition of 8 vol. % titania and organoclay slightly changes the MFI of the PP/EPDM nanocomposites whereas the addition of 8 vol. % alumina drastically decreased the MFI values. Further addition of nanofillers up to 8 vol. % decreases the MFI values of the PP/EPDM nanocomposites.


2019 ◽  
Vol 394 ◽  
pp. 85-89
Author(s):  
Kęstutis Beleška ◽  
Virgilijus Valeika ◽  
Virginija Jankauskaite ◽  
Violeta Valeikiene

Natural biopolymers were studied for their possible role as biodegradable fillers forlow-density polyethylene (LDPE) films. LDPE/biopolymer blends and films were prepared andcharacterized by the melt flow index (MFI) and tensile test. The addition of biopolymer to LDPEreduced the MFI values, the tensile strength and modulus, whereas the elongation at break increased.Interfacial interaction was better for LDPE/biopolymer blends containing soybean oil. Blendsprepared with oil showed the same behaviour as LDPE/biopolymer blends, indicating thatbiopolymer was the main factor that influenced the properties of blend.


Author(s):  
Gul’naz A. Sabirova ◽  
◽  
Ruslan R. Safin ◽  
Nour R. Galyavetdinov ◽  
Aigul R. Shaikhutdinova ◽  
...  

Composite materials based on wood filler are promising materials that are actively conquering the market. This is due to the advantages of using these materials in various fields: weather resistance and environmental compatibility, easy machining and possibility of recycling. Furthermore, it is sustainable use of wastes of timber sawing and furniture and woodworking industries, as well as low-grade wood. Wood powder is also known to be one of the components of consumables used in additive 3D printing technologies. Over the last decade, the commercial use of 3D printers has increased rapidly due to the fact that it allows creating prototype objects of complex shape based on a computer model. Experimental studies were carried out to determine the tensile strength and rheological properties of a composite made of polylactide 4043D, untreated wood powder brand 140 and wood powder thermally modified at 200 and 240 °C. The composite is intended for creation of three-dimensional objects by extrusion using a 3D printer. It was found that with an increase in the amount of filler in the composite, the tensile strength decreases. Also, samples with thermally modified filler show an increase in tensile strength in comparison with samples with untreated filler. Prototypes of 3D threads with different composition were obtained, during the study of which the melt flow index was examined. It was found that with increasing temperature of wood filler treatment the melt flow index increases. With a lower content of wood powder in the melt composition, there is a 2-fold increase in the melt flow index. The knowing of the rheological properties of the resulting compositions will allow achieving maximum performance and reduction of energy and production costs.


2013 ◽  
Vol 658 ◽  
pp. 19-24
Author(s):  
Chamaiporn Yamoum ◽  
Rathanawan Magaraphan

Polylactide (PLA) was plasticized by two types of plasticizers, glycerol and triacetin. These plasticized PLA were mixed with carboxymethylcellulose (CMC). It was found that with only small amount of CMC, 4.5 wt%, it is effectively to lower glass transition, cold crystallization and melting temperatures of glycerol-plasticized PLA (PLA-g) but not much affected on tensile properties. Moreover, increasing amount of CMC twice could not much affect thermal properties but largely reduced tensile strength, modulus and elongation. The melt flow index of the PLA-g increased largely with the amount of CMC. When 4.5 wt% CMC was added to the glycerol-triacetin plasticized PLA, only glass transition temperature became lower than that of 4.5 wt% CMC filled PLA-g but melting temperature and crystallinity were rather increased with poorer mechanical properties. Increasing amount of CMC tended to enhance melting temperature but still rather poor mechanical properties and high melt flow index. So, the CMC had strong positive effect on melt and negative effect on solid properties of plasticized PLA.


2013 ◽  
Vol 701 ◽  
pp. 202-206
Author(s):  
Ahmad Aroziki Abdul Aziz ◽  
Sakinah Mohd Alauddin ◽  
Ruzitah Mohd Salleh ◽  
Mohammed Iqbal Shueb

Effect of nanoMagnesium Hydroxide (MH) nloading amount to the mechanical and physical properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nanocomposite has been described and investigated in this paper. The tensile strength results show that increased amount of nanofiller will decrease and deteriorate the mechanical properties. The elongation at break decreased continuously with increasing loading of nanofiller. Generally, mechanical properties become poorer as loading amount increase. Melt Flow Index values for physical properties also provide same trend as mechanical properties results. Increase filler amount reduced MFI values whereby increased resistance to the flow.


2013 ◽  
Vol 772 ◽  
pp. 34-37
Author(s):  
Hao Tang ◽  
Hai Tian Jiang ◽  
Bin Guo ◽  
Pan Xin Li

Corn starch was irradiated by 60Coγ ray, and then the thermoplastic starch plastic (TPS) was prepared by adding glycerol. Microstructure, thermal and mechanical properties of the corn starch and starch plastic were studied in details by FTIR, DSC and SEM. Results showed that the starch macromolecular structure was damaged by irradiation, and with increased irradiation time, the temperature of melt endothermic peak and tensile strength decreased, elongation at break increases for starch plastic, the thermoplastic property of starch was enhanced obviously.


Sign in / Sign up

Export Citation Format

Share Document