scholarly journals Defense Budget Growth and Inflation: A Wavelet-Based Study of the U.S. and Britain

2022 ◽  
pp. 147892992110684
Author(s):  
Yu Wang

Despite the extensive theoretical connections between defense budget growth and inflation, empirical findings based on traditional time-domain methods have been inconclusive. This study reexamines the issue from a time–frequency perspective. Applying continuous wavelet analysis to the U.S. and Britain, it shows empirical evidence in support of positive bilateral effects in both cases. In the bivariate context, U.S. defense budget growth promoted inflation at 2- to 4-year cycles in the 1840s and at 8- to 24-year cycles between 1825 and 1940. Conversely, inflation accelerated defense spending growth at 5- to 7-year cycles in the 1830s and at 25- to 64-year cycles between 1825 and 1940. Similarly, British defense budget growth spurred inflation at 8- to 48-year cycles between 1890 and 1940 and at 50- to 65-year cycles between 1790 and 1860. Inflation fueled the growth of defense spending at 7- to 20-year cycles between 1840 and 1870, in the 1940s, and in the 1980s. Preliminary results from multivariate analyses are also supportive, though there is a need for further research that is contingent on advancements in the wavelet method in the direction of simulation-based significance tests.

1994 ◽  
Vol 88 (4) ◽  
pp. 839-852 ◽  
Author(s):  
James H. Lebovic

Bureaucratic politics is the favored explanation of those addressing the perversities of defense budgeting. But it is arguably devoid of politics, given its dependence on either aggregate top-down or horizontal models. I seek to redirect analysis. I disaggregate defense spending (by service and weapon type) and study budget sensitivity to program pressures in the buildups and builddowns of the Reagan-Bush eras. Applying a two-equation model to time-series cross-sectional data, the analysis shows weapon budgets increasing with program diversification and a commitment to defense spending. In turn, it shows programs diversifying to accomodate service objectives: when turning to missions, the services increased program varieties while concentrating program resources.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Wei Xiong ◽  
Qingbo He ◽  
Zhike Peng

Wayside acoustic defective bearing detector (ADBD) system is a potential technique in ensuring the safety of traveling vehicles. However, Doppler distortion and multiple moving sources aliasing in the acquired acoustic signals decrease the accuracy of defective bearing fault diagnosis. Currently, the method of constructing time-frequency (TF) masks for source separation was limited by an empirical threshold setting. To overcome this limitation, this study proposed a dynamic Doppler multisource separation model and constructed a time domain-separating matrix (TDSM) to realize multiple moving sources separation in the time domain. The TDSM was designed with two steps of (1) constructing separating curves and time domain remapping matrix (TDRM) and (2) remapping each element of separating curves to its corresponding time according to the TDRM. Both TDSM and TDRM were driven by geometrical and motion parameters, which would be estimated by Doppler feature matching pursuit (DFMP) algorithm. After gaining the source components from the observed signals, correlation operation was carried out to estimate source signals. Moreover, fault diagnosis could be carried out by envelope spectrum analysis. Compared with the method of constructing TF masks, the proposed strategy could avoid setting thresholds empirically. Finally, the effectiveness of the proposed technique was validated by simulation and experimental cases. Results indicated the potential of this method for improving the performance of the ADBD system.


2019 ◽  
Vol 219 (2) ◽  
pp. 975-994 ◽  
Author(s):  
Gabriel Gribler ◽  
T Dylan Mikesell

SUMMARY Estimating shear wave velocity with depth from Rayleigh-wave dispersion data is limited by the accuracy of fundamental and higher mode identification and characterization. In many cases, the fundamental mode signal propagates exclusively in retrograde motion, while higher modes propagate in prograde motion. It has previously been shown that differences in particle motion can be identified with multicomponent recordings and used to separate prograde from retrograde signals. Here we explore the domain of existence of prograde motion of the fundamental mode, arising from a combination of two conditions: (1) a shallow, high-impedance contrast and (2) a high Poisson ratio material. We present solutions to isolate fundamental and higher mode signals using multicomponent recordings. Previously, a time-domain polarity mute was used with limited success due to the overlap in the time domain of fundamental and higher mode signals at low frequencies. We present several new approaches to overcome this low-frequency obstacle, all of which utilize the different particle motions of retrograde and prograde signals. First, the Hilbert transform is used to phase shift one component by 90° prior to summation or subtraction of the other component. This enhances either retrograde or prograde motion and can increase the mode amplitude. Secondly, we present a new time–frequency domain polarity mute to separate retrograde and prograde signals. We demonstrate these methods with synthetic and field data to highlight the improvements to dispersion images and the resulting dispersion curve extraction.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881346 ◽  
Author(s):  
Tabi Fouda Bernard Marie ◽  
Dezhi Han ◽  
Bowen An ◽  
Jingyun Li

To detect and recognize any type of events over the perimeter security system, this article proposes a fiber-optic vibration pattern recognition method based on the combination of time-domain features and time-frequency domain features. The performance parameters (event recognition, event location, and event classification) are very important and describe the validity of this article. The pattern recognition method is precisely based on the empirical mode decomposition of time-frequency entropy and center-of-gravity frequency. It implements the function of identifying and classifying the event (intrusions or non-intrusion) over the perimeter to secure. To achieve this method, the first-level prejudgment is performed according to the time-domain features of the vibration signal, and the second-level prediction is carried out through time-frequency analysis. The time-frequency distribution of the signal is obtained by empirical mode decomposition and Hilbert transform and then the time-frequency entropy and center-of-gravity frequency are used to form the time-frequency domain features, that is, combined with the time-domain features to form feature vectors. Multiple types of probabilistic neural networks are identified to determine whether there are intrusions and the intrusion types. The experimental results demonstrate that the proposed method is effective and reliable in identifying and classifying the type of event.


2012 ◽  
Vol 177 (7) ◽  
pp. 829-835 ◽  
Author(s):  
Shad Deering ◽  
Taylor Sawyer ◽  
Jeffrey Mikita ◽  
Douglas Maurer ◽  
Bernard J. Roth

2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Zhang ◽  
Chengyu Liu ◽  
Zhimin Zhang ◽  
Yujie Xing ◽  
Xinwen Liu ◽  
...  

The present study addresses the cardiac arrhythmia (CA) classification problem using the deep learning (DL)-based method for electrocardiography (ECG) data analysis. Recently, various DL techniques have been utilized to classify arrhythmias, with one typical approach to developing a one-dimensional (1D) convolutional neural network (CNN) model to handle the ECG signals in the time domain. Although the CA classification in the time domain is very prevalent, current methods’ performances are still not robust or satisfactory. This study aims to develop a solution for CA classification in two dimensions by introducing the recurrence plot (RP) combined with an Inception-ResNet-v2 network. The proposed method for nine types of CA classification was tested on the 1st China Physiological Signal Challenge 2018 dataset. During implementation, the optimal leads (lead II and lead aVR) were selected, and then 1D ECG segments were transformed into 2D texture images by the RP approach. These RP-based images as input signals were passed into the Inception-ResNet-v2 for CA classification. In the CPSC, Georgia, and the PTB_XL ECG databases of the PhysioNet/Computing in Cardiology Challenge 2020, the RP-based method achieved an average F1-score of 0.8521, 0.8529, and 0.8862, respectively. The results suggested the excellent generalization ability of the proposed method. To further assess the performance of the proposed method, we compared the 2D RP-image-based solution with the published 1D ECG-based works on the same dataset. Also, it was compared with two traditional ECG transform into 2D image methods, including the time waveform of the ECG recordings and time-frequency images based on continuous wavelet transform (CWT). The proposed method achieved the highest average F1-score of 0.844, with only two leads of the 12-lead ECG original data, which outperformed other works. Therefore, the promising results indicate that the 2D RP-based method has a high clinical potential for CA classification using fewer lead ECG signals.


Sign in / Sign up

Export Citation Format

Share Document