scholarly journals HISTOCHEMICAL INVESTIGATIONS ON THE IN VIVO EFFECTS OF FLUORIDE ON TRICARBOXYLIC ACID CYCLE DEHYDROGENASES FROM PELARGONIUM ZONALE: PART II

1967 ◽  
Vol 15 (4) ◽  
pp. 202-206
Author(s):  
C. JAMES LOVELACE ◽  
GENE W. MILLER

In vivo effects of fluoride on tricarboxylic acid (TCA) cycle dehydrogenase enzymes of Pelargonium zonale were studied using p-nitro blue tetrazoleum chloride. Plants were exposed to 17 ppb HF, and enzyme activities in treated plants were compared to those in controls. Leaves of control plants were incubated in 5 x 10–3 M sodium fluoride. Injuries observed in fumigation and solution experiments were similar. Leaf tissue subjected to HF or sodium fluoride evidenced less succinic p-nitro blue tetrazoleum reductase activity than did control tissue. Other TCA cycle dehydrogenase enzymes were not observably affected by the fluoride concentrations used in these experiments. Excised leaves cultured in 5 x 10–3 M sodium fluoride exhibited less succinic p-nitro blue tetrazoleum reductase activity after 24 hr than did leaves cultured in 5 x 10–3 M sodium chloride.

2009 ◽  
Vol 29 (4) ◽  
pp. 661-669 ◽  
Author(s):  
Jehoon Yang ◽  
Su Xu ◽  
Jun Shen

In vivo13C magnetic resonance spectroscopy has been applied to studying brain metabolic processes by measuring 13C label incorporation into cytosolic pools such as glutamate and aspartate. However, the rate of exchange between mitochondrial α-ketoglutarate/oxaloacetate and cytosolic glutamate/aspartate ( Vx) extracted from metabolic modeling has been controversial. Because brain fumarase is exclusively located in the mitochondria, and mitochondrial fumarate is connected to cytosolic aspartate through a chain of fast exchange reactions, it is possible to directly measure Vx from the four-carbon side of the tricarboxylic acid cycle by magnetization transfer. In isoflurane-anesthetized adult rat brain, a relayed 13C magnetization transfer effect on cytosolic aspartate C2 at 53.2ppm was detected after extensive signal averaging with fumarate C2 at 136.1ppm irradiated using selective radiofrequency pulses. Quantitative analysis using Bloch–McConnell equations and a four-site exchange model found that VxE13–19 µmol per g per min (≫ VTCA, the tricarboxylic acid cycle rate) when the longitudinal relaxation time of malate C2 was assumed to be within ±33% of that of aspartate C2. If VxE VTCA, the isotopic exchange between mitochondria and cytosol would be too slow on the time scale of 13C longitudinal relaxation to cause a detectable magnetization transfer effect.


2005 ◽  
Vol 187 (9) ◽  
pp. 2967-2973 ◽  
Author(s):  
Cuong Vuong ◽  
Joshua B. Kidder ◽  
Erik R. Jacobson ◽  
Michael Otto ◽  
Richard A. Proctor ◽  
...  

ABSTRACT Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental conditions are known to repress tricarboxylic acid (TCA) cycle activity, leading us to hypothesize that altering TCA cycle activity would affect PIA production. Culturing Staphylococcus epidermidis with a low concentration of the TCA cycle inhibitor fluorocitrate dramatically increased PIA production without impairing glucose catabolism, the growth rate, or the growth yields. These data lead us to speculate that one mechanism by which staphylococci perceive external environmental change is through alterations in TCA cycle activity leading to changes in the intracellular levels of biosynthetic intermediates, ATP, or the redox status of the cell. These changes in the metabolic status of the bacteria result in the attenuation or augmentation of PIA production.


1992 ◽  
Vol 262 (4) ◽  
pp. L495-L501 ◽  
Author(s):  
D. J. Bassett ◽  
S. S. Reichenbaugh

O2-induced impairment of mitochondrial energy generation was examined in intact lungs isolated from rats after 18-30 h exposure to either air or 100% O2 in vivo. Mitochondrial metabolic rates were determined by separate measurements of 14CO2 production from [1-14C]pyruvate and [U-14C]palmitate, perfused under normal and stimulated metabolic conditions brought about by perfusion with the uncoupler of oxidative phosphorylation, 2,4-dinitrophenol (DNP). In the absence of DNP, O2 exposure did not significantly alter 14CO2 productions from either substrate. DNP increased lung pyruvate and palmitate catabolism to CO2 twofold in air-exposed lungs but did not alter 14CO2 production in lungs isolated from O2-exposed rats. These data demonstrated an O2-induced impairment of maximal mitochondrial metabolism of both pyruvate and palmitate that could not be explained by alterations in tissue free coenzyme A or by loss of pyridine nucleotides. However, comparisons of the steady-state levels of tricarboxylic acid cycle intermediates between O2- and air-exposed lungs did identify isocitrate dehydrogenase as a possible site of O2-induced enzyme inactivation.


1991 ◽  
Vol 278 (2) ◽  
pp. 515-519 ◽  
Author(s):  
Z Spolarics ◽  
G J Bagby ◽  
C H Lang ◽  
J J Spitzer

Alterations of glucose metabolism and the oxidation of glutamine and palmitate were studied, by using specifically labelled substrates, in freshly isolated Kupffer cells and hepatic endothelial cells after infusion in vivo of human recombinant tumour necrosis factor-alpha (TNF; 7.5 x 10(5) IU/30 min per kg body wt., intravenously). Cells were incubated in a medium containing 5 mM-glucose, 0.4 mM-palmitate, 1 mM-lactate and 0.5 mM-glutamine. Administration of TNF in vivo increased glucose use in Kupffer cells by 70%. Glucose oxidation in the tricarboxylic acid cycle and flux in the Embden-Meyerhof (EM) pathway were elevated by 40 and 80% respectively. Treatment in vitro with 1 microM-phorbol 12-myristate 13-acetate (PMA) resulted in a similar percentage increase in glucose use by Kupffer cells prepared from either saline- or TNF-treated rats. However, PMA increased the activity of the hexose monophosphate shunt (HMS) by 3- and 10-fold in cells isolated from saline- or TNF-infused animals respectively. A phagocyte stimulus in vitro, opsonized zymosan, increased glucose use by 30% and doubled the flux through the HMS in Kupffer cells from saline-infused animals. The activity of the HMS in response to zymosan was increased by 400% after TNF treatment. In endothelial cells, basal glucose utilization was not altered by TNF treatment. PMA increased HMS activity in endothelial cells to a similar degree after saline or TNF infusion. Zymosan, however, increased HMS activity only in endothelial cells from TNF-treated rats. Oxidation of palmitate or glutamine was not affected by TNF treatment either under basal conditions or after challenge in vitro. Our data indicate that, after phagocytosis in vitro or protein kinase C activation, glucose use and flux through the HMS increase in Kupffer cells. This is accompanied by increased glycolytic flux, with no changes in glucose oxidation in the tricarboxylic acid cycle. After TNF exposure, followed by a secondary stimulus, the enhanced glucose use by Kupffer cells is primarily channelled through the HMS pathway. These data suggest that the increased glucose use in vivo by Kupffer cells found after immune-stimulated conditions may subserve primarily the increased need for NADPH and HMS intermediates.


1965 ◽  
Vol 43 (6) ◽  
pp. 647-659 ◽  
Author(s):  
Peter R. Weldon ◽  
Bernard Rubenstein ◽  
David Rubinstein

The metabolism of glucose, galactose, leucine, acetate, and palmitate by rat liver slices incubated in the presence of varying amounts of CCl4was studied. Carbon tetrachloride, 1 to 9 μl, introduced into the side arm of a Warburg vessel, produced concentrations in the slices of 0.4 to 3.3 mg/g liver. At these concentrations the CCl4produced a decrease in C14O2production from succinate-2,3-C14and glucose-6-C14, but not from glucose-1-C14. The presence of CCl4did not appreciably affect CO2production from glucose-U-C14or galactose-1-C14but stimulated the incorporation of the monosaccharides into glycogen at the lower concentrations (1 mg CCl4/g liver). Higher concentrations of CCl4(2 mg/g liver) inhibited glycogen synthesis; the activities of glycogen synthetase and phosphorylase were decreased, but amylase activity and the level of glucose-6-phosphate in the liver slices remained unchanged. The oxidation of palmitate-1-C14and acetate-1-C14to C14O2is decreased at the higher concentrations of CCl4, while lipogenesis from acetate is stimulated by lower concentrations of CCl4. Esterification of palmitate is not affected by the presence of CCl4. It is concluded that the function of the tricarboxylic acid cycle is altered by CCl4and that acetate may be shunted into fatty acids. The oxidation of leucine-1-C14and the incorporation of the amino acid into protein were diminished in the presence of low concentrations of CCl4. These findings and the changes observed after CCl4administration in vivo are compared, and support is found for the view that CCl4affects hepatic metabolism in vivo directly.


1982 ◽  
Vol 208 (3) ◽  
pp. 743-748 ◽  
Author(s):  
M. Salleh M. Ardawi ◽  
Eric A. Newsholme

1. The maximum activity of hexokinase in lymphocytes is similar to that of 6-phosphofructokinase, but considerably greater than that of phosphorylase, suggesting that glucose rather than glycogen is the major carbohydrate fuel for these cells. Starvation increased slightly the activities of some of the glycolytic enzymes. A local immunological challenge in vivo (a graft-versus-host reaction) increased the activities of hexokinase, 6-phosphofructokinase, pyruvate kinase and lactate dehydrogenase, confirming the importance of the glycolytic pathway in cell division. 2. The activities of the ketone-body-utilizing enzymes were lower than those of hexokinase or 6-phosphofructokinase, unlike in muscle and brain, and were not affected by starvation. It is suggested that the ketone bodies will not provide a quantitatively important alternative fuel to glucose in lymphocytes. 3. Of the enzymes of the tricarboxylic acid cycle whose activities were measured, that of oxoglutarate dehydrogenase was the lowest, yet its activity (about 4.0μmol/min per g dry wt. at 37°C) was considerably greater than the flux through the cycle (0.5μmol/min per g calculated from oxygen consumption by incubated lymphocytes). The activity was decreased by starvation, but that of citrate synthase was increased by the local immunological challenge in vivo. It is suggested that the rate of the cycle would increase towards the capacity indicated by oxoglutarate dehydrogenase in proliferating lymphocytes. 4. Enzymes possibly involved in the pathway of glutamine oxidation were measured in lymphocytes, which suggests that an aminotransferase reaction(s) (probably aspartate aminotransferase) is important in the conversion of glutamate into oxoglutarate rather than glutamate dehydrogenase, and that the maximum activity of glutaminase is markedly in excess of the rate of glutamine utilization by incubated lymphocytes. The activity of glutaminase is increased by both starvation and the local immunological challenge in vivo. This last finding suggests that metabolism of glutamine via glutaminase is important in proliferating lymphocytes.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Janina Noster ◽  
Nicole Hansmeier ◽  
Marcus Persicke ◽  
Tzu-Chiao Chao ◽  
Rainer Kurre ◽  
...  

ABSTRACT The tricarboxylic acid (TCA) cycle is a central metabolic hub in most cells. Virulence functions of bacterial pathogens such as facultative intracellular Salmonella enterica serovar Typhimurium (S. Typhimurium) are closely connected to cellular metabolism. During systematic analyses of mutant strains with defects in the TCA cycle, a strain deficient in all fumarase isoforms (ΔfumABC) elicited a unique metabolic profile. Alongside fumarate, S. Typhimurium ΔfumABC accumulates intermediates of the glycolysis and pentose phosphate pathway. Analyses by metabolomics and proteomics revealed that fumarate accumulation redirects carbon fluxes toward glycogen synthesis due to high (p)ppGpp levels. In addition, we observed reduced abundance of CheY, leading to altered motility and increased phagocytosis of S. Typhimurium by macrophages. Deletion of glycogen synthase restored normal carbon fluxes and phagocytosis and partially restored levels of CheY. We propose that utilization of accumulated fumarate as carbon source induces a status similar to exponential- to stationary-growth-phase transition by switching from preferred carbon sources to fumarate, which increases (p)ppGpp levels and thereby glycogen synthesis. Thus, we observed a new form of interplay between metabolism of S. Typhimurium and cellular functions and virulence. IMPORTANCE We performed perturbation analyses of the tricarboxylic acid cycle of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium. The defect of fumarase activity led to accumulation of fumarate but also resulted in a global alteration of carbon fluxes, leading to increased storage of glycogen. Gross alterations were observed in proteome and metabolome compositions of fumarase-deficient Salmonella. In turn, these changes were linked to aberrant motility patterns of the mutant strain and resulted in highly increased phagocytic uptake by macrophages. Our findings indicate that basic cellular functions and specific virulence functions in Salmonella critically depend on the proper function of the primary metabolism.


Sign in / Sign up

Export Citation Format

Share Document