Functional polyester fabric/polypyrrole polymer composites for electromagnetic shielding: Optimization of process parameters

2016 ◽  
Vol 47 (5) ◽  
pp. 686-711 ◽  
Author(s):  
Veronika Tunáková ◽  
Jan Grégr ◽  
Maroš Tunák ◽  
Gejza Dohnal

Intrinsically conducting polymer polypyrrole/polyester textile composites were prepared by in situ chemical oxidative polymerization of polypyrrole on a polyester fabric. As an oxidizing agent ferric chloride was used, p-toluenesulfonic acid was used as a dopant. Polymerization conditions (concentration of monomer, polymerization time and temperature) were investigated and optimized by the help of Design of experiment methodology to obtain fabric with electromagnetic shielding efficiency at least 12 dB for frequency 1.5 GHz. Moreover, weight increase, macroscopic color shade of images and scanning electron microscopy images of samples were evaluated. It was found that all selected factors and their interactions have statistically significant effect on resulting electromagnetic shielding effectiveness, whereas monomer concentration has the highest positive influence. Experimental data were used to derive an empirical model linking the output and inputs. Optimized parameters (polymerization temperature 6.7℃, polymerization time 10 h and monomer concentration 5.8 g/l) for creating polypyrrole/polyester textile composite with electromagnetic shielding ability higher than 12 dB were successfully verified.

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1657 ◽  
Author(s):  
Marek Neruda ◽  
Lukas Vojtech

In this paper, electromagnetic shielding effectiveness of woven fabrics with high electrical conductivity is investigated. Electromagnetic interference-shielding woven-textile composite materials were developed from a highly electrically conductive blend of polyester and the coated yarns of Au on a polyamide base. A complete analytical model of the electromagnetic shielding effectiveness of the materials with apertures is derived in detail, including foil, material with one aperture, and material with multiple apertures (fabrics). The derived analytical model is compared for fabrics with measurement of real samples. The key finding of the research is that the presented analytical model expands the shielding theory and is valid for woven fabrics manufactured from mixed and coated yarns with a value of electrical conductivity equal to and/or higher than σ = 244 S/m and an excellent electromagnetic shielding effectiveness value of 25–50 dB at 0.03–1.5 GHz, which makes it a promising candidate for application in electromagnetic interference (EMI) shielding.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaohui He ◽  
Yiwang Chen ◽  
Yongming Liu ◽  
Muqing Chen ◽  
Shuxian Yu ◽  
...  

AbstractThe polymerizations of n-butyl methylacrylate (nBMA) were carried out using bis(β-ketoamino)nickel(II) complexes (Ni[CH3C(O)CHC(NR)CH3]2: R = phenyl, 1; R = naphthyl, 2) in combination with methylaluminoxane (MAO) in toluene. The effect of parameters such as polymerization temperature, Al/Ni molar ratios, polymerization time, and monomer concentration, on catalytic polymerization activity and polymer molecular weights, were examined in detail. Both of the nickel(II) catalytic systems exhibited moderate activity, and produced P(nBMA) with high molecular weight and relatively broad molecular weight distribution (Mw/Mn=2.0~3.0. The obtained polymer has been characterized by means of FTIR, 1H NMR, 13C NMR, DSC, and WAXD technique and was confirmed to be syndio-rich stereospecific P(nBMA).


2005 ◽  
Vol 3 (4) ◽  
pp. 705-720 ◽  
Author(s):  
Cemal Özeroğlu ◽  
Sacide Erdoğan

AbstractChemical polymerization of acrylamide at room temperature was examined by using thioglycolic acid-cerium (IV) sulfate and thioglycolic acid-KMnO4 redox systems in acid aqueous medium. Water soluble polyacrylamides containing thioglycolic acid end groups were synthesized. The effects of the molar ratio of acrylamide to Ce(IV) nAAm/nCe(IV), the polymerization time, the temperature, the monomer concentration, the molar ratio of cerium (IV) sulfate to thioglycolic acid and the concentration of sulfuric acid on the yield and molecular weight of polymer were investigated. Lower molar ratios of acrylamide/Ce(IV) at constant monomer concentration resulted in an increase in the yield but a decrease in molecular weight of polymer. The increase of reaction temperature from 20 to 70°C resulted in a decrease in the yield but generally resulted in a constant value for the molecular weight of polymer. With increasing polymerization time, the yield and molecular weight of polymer did not change substantially. Ce(IV) and Mn(VII) ions are reduced to Ce(III) and Mn(II) ions respectively in the polymerization reaction. The existence of Ce(III) ion bound to polymer was investigated by UV-visible spectrophotometry and fluoresce measurements. The amount of Mn(II) incorporated into the polymer was determined using graphite furnace atomic absorption spectrometry. The mechanism of this phenomenon is discussed.


2018 ◽  
Author(s):  
alireza razaghi

In this research aniline polymerization conditions were optimized in presence of pre-treated polyester textile to achieve as high electrical conductivity as 100 S/Cm. Alkaline activation of the polyester textile was followed by immersion in to aqueous acidic solution of aniline monomer. Then the oxidant solution was used to initiate the polymerization. Finally, the prepared product was washed and dried prior to ant test. Functional groups were studied by Fourie-transformed infrared spectrometry (FTIR) from the surface of the polyaniline coated textile. Also, morphological structure of synthesized conductive polyaniline was studied by scanning electron microscopy (SEM). The synthesized cloth was used in a closed circuit in order to light up alight emitting diode to emphasis the conductivity of the textile and fibres that synthesised by this method.


2018 ◽  
Author(s):  
alireza razaghi

In this research aniline polymerization conditions were optimized in presence of pre-treated polyester textile to achieve as high electrical conductivity as 100 S/Cm. Alkaline activation of the polyester textile was followed by immersion in to aqueous acidic solution of aniline monomer. Then the oxidant solution was used to initiate the polymerization. Finally, the prepared product was washed and dried prior to ant test. Functional groups were studied by Fourie-transformed infrared spectrometry (FTIR) from the surface of the polyaniline coated textile. Also, morphological structure of synthesized conductive polyaniline was studied by scanning electron microscopy (SEM). The synthesized cloth was used in a closed circuit in order to light up alight emitting diode to emphasis the conductivity of the textile and fibres that synthesised by this method.


2021 ◽  
pp. 002199832110316
Author(s):  
Jiayang Zhang ◽  
Hongjiang Ni ◽  
Ming Gong ◽  
Jun Li ◽  
Daijun Zhang ◽  
...  

Electromagnetic shielding performance has been achieved for a polyimide (PI)-matrix composite by the strategy of self-metallization of its thermosetting PI matrix. Self-metallization of the thermosetting PI was realized by silver ion/poly(amic acid) (PAA) precursor ion exchange and thermal reduction. The factors influencing the self-metallization were investigated. The electrical conductivity and integrity for the surface of the PI were achieved by optimization of ion exchange/thermal reduction parameters. The fabricated PI-matrix composite exhibits a maximum electromagnetic interference shielding effectiveness value of 81 dB. Importantly, the electromagnetic shielding performance can be maintained even after heat condition of 300°C. Meanwhile, the surface-metallized PI composite exhibits mechanical property equivalent to the pristine composite, and an Ag/matrix interfacial strength higher than 19.6 MPa. Besides, self-metallization mechanism of the thermosetting PI was investigated.


2010 ◽  
Vol 97-101 ◽  
pp. 1790-1793
Author(s):  
Jia Horng Lin ◽  
Yu Tien Huang ◽  
Chin Mei Lin ◽  
Yi Chang Yang ◽  
Chien Teng Hsieh ◽  
...  

According to the results, when low melting polyester fiber increased to be 20%, the electromagnetic shielding/ far infrared ray nonwoven obtained the optimum burst strength, maximum breaking force and maximum tear strength, and they were as follows: burst strength was 4.2 kgf/cm2; maximum breaking force was 153.59 N in the cross machine direction and 70.80 N in the machine direction; maximum tear strength was 215.77 N in cross machine direction and 117.07 N in machine direction; and optimum electromagnetic shielding effectiveness (EMSE) was 45 dB.


Sign in / Sign up

Export Citation Format

Share Document