Effect of fixation stitches on out-of-plane response of textile non-crimp fabric composites

2018 ◽  
Vol 48 (7) ◽  
pp. 1151-1166 ◽  
Author(s):  
Somen K Bhudolia ◽  
Kenneth KC Kam ◽  
Pavel Perrotey ◽  
Sunil C Joshi

Non-crimp fabrics are fabric tapes stitched to an adjacent orthogonal fabric with no associated crimp. In the current research, the effect of fixation polyester stitches in improving through-the-thickness properties of non-crimp fabric composite laminates is investigated. Detailed experimental studies on interlaminar fracture toughness and static indentation properties of stitched and unstitched thin ply carbon fibre epoxy composites have been conducted. About 23% higher peak load and 37% higher energy absorption were noticed during static indentation tests for the stitched ply composites. A detailed SEM investigation has shown that the stitch-stitch interaction ‘within a bi-angle ply’ and ‘between the bi-angle ply’ plays a significant role in reducing the delamination extent. The critical energy release rate during Mode I fracture toughness of stitched composites was found to be 26.5% higher and SEM investigation depicted that the stitches promote the intra-laminar delamination and enhance the toughness of the composite.

2016 ◽  
Vol 35 (23) ◽  
pp. 1722-1733 ◽  
Author(s):  
Masood Nikbakht ◽  
Hossein Hosseini Toudeshky ◽  
Bijan Mohammadi

Critical energy release rate for delamination initiation in composites as a material property, supposed to be independent from non-material variables. However, a thorough literature review presented in this study shows that in many cases it may vary with the variation of layup configuration or geometrical and dimensions. This study is aimed to investigate the effect of interface layers orientation on fracture toughness by eliminating the other influential parameters such as stacking sequence, by selecting the anti-symmetric layup configuration of Double Cantilever Beam, [Formula: see text], in which θ will be 0°, 30°, 45° and 60°. The energy release rates data have been calculated using different criteria and techniques to obtain the load and displacement at initial crack growth and the results were compared with the standard methods. The damage zone near the crack tip is also illustrated before and after the crack propagation by microscopic images of delamination front, and discussed for all investigated interface fiber angles. Experimental results show that the effect of interface layers orientation on fracture toughness of the investigated layup configurations based on the nonlinear technique as a standard procedure is negligible while other techniques show a considerable changes in the calculated energy release rate with the increase of interface layers angle from zero to 60 degrees.


2010 ◽  
Vol 24 (01n02) ◽  
pp. 164-174 ◽  
Author(s):  
SHANE ZHI YUAN LOO ◽  
PUAY CHENG LEE ◽  
ZAN XUAN LIM ◽  
NATALIA YANTARA ◽  
TONG YAN TEE ◽  
...  

In the current work, a test scheme to evaluate solder joint interface fracture toughness using double cantilever beam (DCB) test has been successfully demonstrated. The obtained results, in terms of critical energy release rate, predict the joint failure based on the principle of fracture mechanics. The results can be used as a materials property in the reliability design of various types of solder-ball joined packages. DCB specimens made of 99.9 wt% copper were selected in the current work. Eutectic Sn -37 Pb and lead-free Sn -3.5 Ag -0.5 Cu solders were used to join two pieces of the copper beams with controlled solder thickness. The test record showed steady propagation of the crack along the solder / copper interface, which verifies the viability of such a testing scheme. Interface fracture toughness for as-joined, extensively-reflowed and thermally aged samples has been measured. Both the reflow treatment and the thermal aging lead to degradation of the solder joint fracture resistance. Reflow treatment was more damaging as it induces much faster interface reaction. Fractographic analysis established that the fracture has a mixed micromechanism of dimple and cleavage. The dimples are formed as a result of the separation between the hard intermetallic compound (IMC) particles and the soft solder material, while the cleavage is formed by the brittle split of the IMCs. When the IMC thickness is increased due to extended interface reaction, the proportion of IMC cleavage failure increases, and this was reflected in the decrease of the critical energy release rate.


Author(s):  
Jiantao Zheng ◽  
Suresh K. Sitaraman

Knowledge of the mode-mixity (?) dependent interfacial fracture toughness (Γ) is needed to predict the interface delamination and the component reliability of thin-film structures. Mode-mixity, ?, is a measure of the relative shearing to tensile opening of the interface crack near the tip. Typically, Γ increases as ? increases, such that the delamination is less likely when the loading on the interface is shear-dominated. The measurement of mode-mixity dependent Γ has been a challenge for thin film interfaces. The single-strip superlayer test, developed by the authors, eliminates the shortcomings of current testing methods. This test employs a stress-engineered superlayer to drive the interfacial delamination between the thin-film and the substrate. An innovative aspect of the proposed test is to introduce a release layer of varying width between the interested interfaces to control the amount of energy available for delamination propagation. By designing a decreasing area of the release layer, it is possible to arrest the interfacial delamination at a given location, and the interfacial fracture toughness or critical energy release rate can be found at the location where the delamination ceases to propagate. Design, preparation, and execution of the test are presented. Results are shown for Ti/Si interfaces of different mode mixities.


2020 ◽  
Vol 54 (27) ◽  
pp. 4173-4184
Author(s):  
Bertan Beylergil ◽  
Metin Tanoğlu ◽  
Engin Aktaş

Thermoplastic interleaving is a promising technique to improve delamination resistance of laminated composites. In this study, plain-weave carbon fiber/epoxy composites were interleaved with nylon 6,6 nonwoven fabrics with an areal weight density of 17 gsm. The carbon fiber/epoxy composite laminates with/without nylon 6,6 nonwoven fabric interlayers were manufactured by VARTM technique. Double cantilever beam fracture toughness tests were carried out on the prepared composite test specimens in accordance with ASTM 5528 standard. The experimental test data were statistically analyzed by two-parameter Weibull distribution. The results showed that the initiation and propagation fracture toughness Mode-I fracture toughness of carbon fiber/epoxy composites could be improved by about 34 and 156% (corresponding to a reliability level of 0.50) with the incorporation of nylon 6,6 interlayers in the interlaminar region, respectively. The results also revealed that the percent increase in the propagation fracture toughness value was 67 and 41% at reliability levels of 0.90 and 0.95, respectively.


2020 ◽  
Vol 984 ◽  
pp. 131-136
Author(s):  
Chao Cheng ◽  
Hui Zhang ◽  
Ze Yu Sun ◽  
Yong Liu ◽  
Mu Huo Yu

In this study, E51 was appended as an additive to the PES casting solution and hybrid PES/E51 films with different E51 content were produced by phase inversion approach, applied as interleaves to improve the interlaminar fracture toughness of CF/EP composite laminates prepared by vacuum assistant resin infusion process (VARI). The time that the hybrid film dissloved into the epoxy resin depended on the content of E51 in the film, moreover, it was observed that Mode I fracture toughness of the hybrid film modified composite reduced with the addition of E51 compared with the pure PES film interleaved composite, however, the tensile properties showed the opposite tendency. The reason was the reduction in the thickness of the interlayer resin illustrated by cross-section morphologies of all types of laminates.


2012 ◽  
Vol 525-526 ◽  
pp. 409-412 ◽  
Author(s):  
Guo Wei Zhu ◽  
Yu Xi Jia ◽  
Peng Qu ◽  
Jia Qi Nie ◽  
Yun Li Guo

Delamination is a particularly dangerous damage mode of high performance laminated composites. In order to describe the composites ductile cracking and its progressive evolution accurately, the adjusted exponential cohesive zone model (CZM) is adopted, which correlates the tensile traction with the corresponding interfacial separation along the fracturing interfacial zone. At first the adjusted exponential CZM is used to simulate the mode I delamination of the standard double cantilever beam (DCB). The simulated results are in good agreement with the corrected beam theory and the corresponding experimental results. Then in order to research how the interfacial properties influence the mode I fracture, the interfacial strength and the critical energy release rate are studied. The main results are obtained as follows. The interfacial strength plays a crucial role in the laminated composites delamination onset, and it affects the peak load significantly if there is not a pre-crack. Once the delamination propagation begins to occur in the laminated composites, the responses of the load-displacement plots are relatively insensitive to the interfacial strength, and only the critical energy release rate is of critical importance. Furthermore, the peak load increases with the increase of the critical energy release rate and interfacial strength.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2407 ◽  
Author(s):  
Angela Russo ◽  
Mauro Zarrelli ◽  
Andrea Sellitto ◽  
Aniello Riccio

In this paper, a research activity, focused on the investigation of new reinforcements able to improve the toughness of composite materials systems, is introduced. The overall aim is to delay the delamination propagation and, consequently, to increase the carrying load capability of composite structures by exploiting the fiber bridging effects. Indeed, the influence of fiber bridging related Mode I fracture toughness (GIc) values on the onset and propagation of delaminations in stiffened composite panels, under three-point bending loading conditions, have been experimentally and numerically studied. The investigated stiffened panels have been manufactured by using epoxy resin/carbon fibers material systems, characterized by different GIc values, which can be associated with the material fiber bridging sensitivity. Experimental data, in terms of load and delaminated area as a function of the out-of-plane displacements, have been obtained for each tested sample. Non-Destructive Inspection (NDI) has been performed to identify the debonding extension and position. To completely understand the evolution of the delamination and its dependence on the material characteristics, experiments have been numerically simulated using a newly developed robust numerical procedure for the delamination growth simulation, able to take into account the influence of the fracture toughness changes, associated with the materials’ fiber bridging sensitivity. The combined use of numerical results and experimental data has allowed introducing interesting considerations of the capability of the fiber bridging to substantially slow down the evolution of the debonding between skin and reinforcements in composite stiffened panels.


1999 ◽  
Vol 121 (4) ◽  
pp. 275-281 ◽  
Author(s):  
V. Sundararaman ◽  
S. K. Sitaraman

This work focuses on the interpretation of experimental results obtained from fracture toughness tests conducted for a typical metal/polymer bimaterial interface similar to those encountered in electronic packaging applications. Test specimens with pre-implanted interfacial cracks were subjected to a series of fracture toughness tests. Interfacial fracture toughness is interpreted from the experimental results as the critical energy release rate (Gc) at the instant of crack advance. The values of Gc from the experiments are determined using direct data reduction methods assuming linear elastic material behavior. These Gc values are compared to critical energy release rate values predicted by closed-from analyses of the tests, and to critical J-integral values obtained from finite-element analyses of the test specimen geometries. The closed-form analyses assume linear elastic material behavior, while the finite-element analyses assume both linear elastic as well as elastic-plastic material behaviors.


Sign in / Sign up

Export Citation Format

Share Document