Temporal Effects of Different Vehicles on Wound Healing Potentials of Quercetin: Biochemical, Molecular, and Histopathological Approaches

Author(s):  
Vinay Kant ◽  
Manish Kumar ◽  
Babu Lal Jangir ◽  
Vinod Kumar

Development of novel drugs or formulations to accelerate the wound healing process is the need of current era. Quercetin (Q), a bioflavonoid, at 0.3% concentration has showed some wound healing potential in our preliminary studies. The present study was aimed to explore the wound healing potential of 0.3% quercetin formulated in 3 different vehicles, that is, dimethyl sulfoxide (DMSO; 10%), ointment base, and corn oil. Ninety experimentally wounded rats were grouped in 6 groups. The 0.3% quercetin mixed with DMSO, ointment base, and corn oil was topically applied once daily for 21 days on the wounds of groups 2, 4, and 6, respectively. DMSO, ointment base, and corn oil alone was applied similarly in groups 1, 3, and 5, respectively. Gross evaluation and wound contraction results revealed accelerated wound closure in all quercetin-treated groups. The mRNA expressions of vascular endothelial growth factor, transforming growth factor-β1, and interluekin-10 were markedly upregulated in healing tissues of quercetin-treated groups. Tumor necrosis factor-α mRNA expression and protein levels were lowered by quercetin treatment. Quercetin-treated groups also showed increased activities of SOD (superoxide dismutase) and catalase, and levels of total thiols in wound tissues on day 7. Levels of superoxide anion radicals and malondialdehyde were markedly lower in quercetin-treated groups. Histologically, wound sections of quercetin-treated groups showed early dominance of fibroblasts, increased blood vessels, marked collagen deposition, and regenerated epithelial layer. The significant effects were more pronounced in ointment + Q group among all the quercetin-treated groups. In conclusion, 0.3% quercetin mixed in ointment base produced the fastest and better wound healing in rats.

2012 ◽  
Vol 302 (8) ◽  
pp. C1213-C1225 ◽  
Author(s):  
Chen Zhang ◽  
Chek Kun Tan ◽  
Craig McFarlane ◽  
Mridula Sharma ◽  
Nguan Soon Tan ◽  
...  

Myostatin (Mstn) is a secreted growth and differentiation factor that belongs to the transforming growth factor-β (TGF-β) superfamily. Mstn has been well characterized as a regulator of myogenesis and has been shown to play a critical role in postnatal muscle regeneration. Herein, we report for the first time that Mstn is expressed in both epidermis and dermis of murine and human skin and that Mstn-null mice exhibited delayed skin wound healing attributable to a combination of effects resulting from delayed epidermal reepithelialization and dermal contraction. In epidermis, reduced keratinocyte migration and protracted keratinocyte proliferation were observed, which subsequently led to delayed recovery of epidermal thickness and slower reepithelialization. Furthermore, primary keratinocytes derived from Mstn-null mice displayed reduced migration capacity and increased proliferation rate as assessed through in vitro migration and adhesion assays, as well as bromodeoxyuridine incorporation and Western blot analysis. Moreover, in dermis, both fibroblast-to-myofibroblast transformation and collagen deposition were concomitantly reduced, resulting in a delayed dermal wound contraction. These decreases are due to the inhibition of TGF-β signaling. In agreement, the expression of decorin, a naturally occurring TGF-β suppressor, was elevated in Mstn-null mice; moreover, topical treatment with TGF-β1 protein rescued the impaired skin wound healing observed in Mstn-null mice. These observations highlight the interplay between TGF-β and Mstn signaling pathways, specifically through Mstn regulation of decorin levels during the skin wound healing process. Thus we propose that Mstn agonists might be beneficial for skin wound repair.


2002 ◽  
Vol 190 (3) ◽  
pp. 375-381 ◽  
Author(s):  
Takuro Kinbara ◽  
Fumiaki Shirasaki ◽  
Shigeru Kawara ◽  
Yutaka Inagaki ◽  
Benoit de Crombrugghe ◽  
...  

2011 ◽  
Vol 301 (6) ◽  
pp. G950-G955 ◽  
Author(s):  
Thomas N. Wight ◽  
Susan Potter-Perigo

Fibrosis is characterized by excessive accumulation of collagen and other extracellular matrix (ECM) components, and this process has been likened to aberrant wound healing. The early phases of wound healing involve the formation of a provisional ECM containing fibrin, fibrinogen, and fibronectin. Fibroblasts occupy this matrix and proliferate in response to activators elaborated by leukocytes that have migrated into the wound and are retained by the ECM. This coincides with the appearance of the myofibroblast, a specialized form of fibroblast whose differentiation is primarily driven by cytokines, such as transforming growth factor-β (TGF-β), and by mechanical tension. When these signals are reduced, as when TGF-β secretion is reduced, or as in scar shrinkage, myofibroblasts undergo apoptosis, resulting in a collagen-rich, cell-poor scar. Retention of myofibroblasts in fibrosis has been described as the result of imbalanced cytokine signaling, especially with respect to levels of activated TGF-β. ECM components can regulate myofibroblast persistence directly, since this phenotype is dependent on extracellular hyaluronan, tenascin-C, and the fibronectin splice variant containing the “extra domain A,” and also, indirectly, through retention of TGF-β-secreting cells such as eosinophils. Thus the ECM is actively involved in both cellular and extracellular events that lead to fibrosis. Targeting components of the ECM as cells respond to injury and inflammatory stimuli holds promise as a means to avoid development of fibrosis and direct the wound-healing process toward reestablishment of a healthy equilibrium.


Sign in / Sign up

Export Citation Format

Share Document