Preparation of Hydrophobic Nylon Fabric

2016 ◽  
Vol 11 (1) ◽  
pp. 155892501601100
Author(s):  
Jinmei Du ◽  
Lulu Zhang ◽  
Jing Dong ◽  
Ying Li ◽  
Changhai Xu ◽  
...  

Surface roughness and surface energy are two important factors affecting the hydrophobicity of nylon fabric. In this study, nylon fabric was treated for hydrophobicity with tetrabutyltitanate (TBT) and octadecylamine (OA) which were respectively responsible for increasing surface roughness and reducing surface energy. In order to enhance the hydrophobicity, In order to further enhance hydrophobicity by increasing available reactive sites, 1,2,3,4–butanetetracarboxylic acid (BTCA) was applied as a pretreatment to the nylon fabric It was found that the carboxyl content of nylon was increased by the BTCA pretreatment. SEM images showed that the TBT treatment produced small particles on nylon fabric which made surface rough. The water contact angle of nylon fabric treated with BTCA, TBT and OA was measured to be 134°, which was much greater than the water contact angle of nylon fabric treated only with OA. This indicated that the surface roughness resulting from the TBT treatment played an important role in improving hydrophobicity of the treated nylon fabric. The resistance to water penetration and the repellency of water spray of nylon fabric treated with BTCA, TBT and OA were respectively measured to be 27.64 mbar and 85 out of 100.

2021 ◽  
Vol 21 (8) ◽  
pp. 4492-4497
Author(s):  
Eun Ae Shin ◽  
Gye Hyeon Kim ◽  
Jeyoung Jung ◽  
Sang Bong Lee ◽  
Chang Kee Lee

Hydrophobic ceramic coatings are used for a variety of applications. Generally, hydrophobic coating surfaces are obtained by reducing the surface energy of the coating material or by forming a highly textured surface. Reducing the surface energy of the coating material requires additional costs and processing and changes the surface properties of the ceramic coating. In this study, we introduce a simple method to improve the hydrophobicity of ceramic coatings by implementing a textured surface without chemical modification of the surface. The ceramic coating solution was first prepared by adding cellulose nanofibers (CNFs) and then applied to a polypropylene (PP) substrate. The surface roughness increased as the amount of added CNFs increased, increasing the water contact angle of the surface. When the amount of CNFs added was corresponding to 10% of the solid content, the surface roughness average of the area was 43.8 μm. This is an increase of approximately 140% from 3.1 μm (the value of the surface roughness of the surface without added CNFs). In addition, the water contact angle of the coating with added CNF increased to 145.0°, which was 46% higher than that without the CNFs. The hydrophobicity of ceramic coatings with added CNFs was better because of changes in the surface topography. After coating and drying, the CNFs randomly accumulated inside the ceramic coating layer, forming a textured surface. Thus, hydrophobicity was improved by implementing a rugged ceramic surface without revealing the surface of the CNFs inside the ceramic layer.


2017 ◽  
Vol 268 ◽  
pp. 87-91
Author(s):  
Syarinie Azmi ◽  
Ramli Arifin ◽  
Sib Krishna Ghoshal

Economically viable and maintenance free glass surfaces with improved hydrophobicity are highly demanding in the recent nanotechnology era. Deposition of pollutants and dirt on glass surface that not only causes visual obscurity but also damages the cultural heritages are still to be researched intensely. It is documented that excellent hydrophobic surfaces (with contact angle greater than 90o) can be achieved by controlling the surface wettability, where liquid droplets remain spherical on such surfaces. Selection of materials and the preparation method play a significant role towards such accomplishments. Stirred by this idea, we explored the feasibility of fabricating super-hydrophobic tellurite glass systems by facilely varying the compositions of different constituents. Highly transparent and thermally stable ternary tellurite glass system with chemical composition of (80-x)TeO2 – xSiO2 – 20ZnO, where x = 0.00 to 0.20 mol% are synthesized via conventional melt-quenching method. Samples are characterized using Atomic Force Microscopy (AFM) and contact angle measurements. The impact of SiO2 concentrations variation on the surface roughness, surface energy, and hydrophobic properties are inspected. Glass surface roughness as much as 9.885 nm is attained. The optimal value of water contact angle is discerned to be 101.02° for 0.1 mol% of SiO2 incorporation into the amorphous tellurite host matrix. Besides, the surface energy revealed an inverse proportionality to the water contact angle. This achieved contact angle (greater than 90°) makes this hydrophobic glass surface beneficial for diverse applications. It is established that the present glass composition may be prospective for the development of super-hydrophobic surfaces.


2021 ◽  
Vol 29 (9_suppl) ◽  
pp. S1361-S1370
Author(s):  
Xuwu Luo ◽  
Guancheng Jiang ◽  
Xinliang Li ◽  
Lili Yang

In this paper, sodium montmorillonite was modified with gelatin of different concentrations, and various colloidal characteristics of the gelatin-treated clays were measured and analyzed in detail. First, the influence of gelatin on the interlayer space of Mt layers was investigated by X-ray diffraction analysis. Moreover, the aggregation of Mt particles was examined using a combination of electron microscopy and particle size distribution experiments, while the variation of the electrical property of Mt was measured using ζ potential test. Gelatin of different concentrations can increase the particle size of Mt in different degrees. The addition of 4% gelatin could improve the ζ potential of Mt from −30.65 to −15.55 mV. The wettability change of modified Mt induced by the adsorption of gelatin was followed by measurements of water contact angle and observations of the morphology of Mt/gelatin membrane through SEM images. 4% gelatin could improve the water contact angle of Mt to 81.3°. Finally, the rheological properties of Mt/gelatin dispersion including shear viscosity and shear stress were measured using a stress-controlled rheometer. All of the results were consistent by showing that the overall colloidal characteristics and behavior of the gelatin-treated Mt strongly varied depending on the gelatin concentration used in the modification process. These results can provide a deep and comprehensive understanding of the colloidal properties of clay/gelatin systems and give important guidance for the performance design and improvement of Mt/gelatin composite materials. Furthermore, this study can also be expanded the application of gelatin and its composites to other fields.


2017 ◽  
Vol 7 ◽  
pp. 184798041770279 ◽  
Author(s):  
Baojiang Liu ◽  
Taizhou Tian ◽  
Jinlong Yao ◽  
Changgen Huang ◽  
Wenjun Tang ◽  
...  

A robust superhydrophobic organosilica sol-gel-based coating on a cotton fabric substrate was successfully fabricated via a cost-effective one-step method. The coating was prepared by modification of silica nanoparticles with siloxane having long alkyl chain that allow to reduce surface energy. The coating on cotton fabric exhibited water contact angle of 151.6°. The surface morphology was evaluated by scanning electron microscopy, and surface chemical composition was measured with X-ray photoelectron spectroscopy. Results showed the enhanced superhydrophobicity that was attributed to the synergistic effect of roughness created by the random distribution of silica nanoparticles and the low surface energy imparted of long-chain alkane siloxane. In addition, the coating also showed excellent durability against washing treatments. Even after washed for 30 times, the specimen still had a water contact angle of 130°, indicating an obvious water-repellent property. With this outstanding property, the robust superhydrophobic coating exhibited a prospective application in textiles and plastics.


2017 ◽  
Vol 8 (20) ◽  
pp. 3045-3049 ◽  
Author(s):  
Gérald Lopez ◽  
Marc Guerre ◽  
Bruno Améduri ◽  
Jean-Pierre Habas ◽  
Vincent Ladmiral

A 4-arm PVDF photocrosslinked coating displays outstanding adhesion properties to a metal surface, and tunable surface energy and water contact angle.


2017 ◽  
Vol 29 (5) ◽  
pp. 696-705 ◽  
Author(s):  
Mangesh Teli ◽  
Bhagyashri N. Annaldewar

Purpose The purpose of this paper is to prepare coloured superhydrophobic and ultraviolet (UV) protective nylon fabrics using nanosilica copper oxide coating. Design/methodology/approach In this study, brown coloured superhydrophobic nylon fabric exhibiting UV protective properties was prepared by step-wise deposition of silica nanoparticles, copper oxide and sodium stearate. The hydrophobicity of treated fabrics was characterised by water contact angle measurement and UV protection properties of fabric were assessed by Australian/New Zealand Standard. Also, a colouring effect of treatment on nylon fabric was measured using spectrophotometer. Findings The modified fabric not only exhibited superhydrophobicity with the water contact angle of 150.6°, but also rendered excellent protection against UV radiation. The fabric showed retention of hydrophobic and UV protection properties up to 20 washing cycles. Originality/value A novel method for imparting superhydrophobicity and UV protective properties along with colouration effect on nylon fabrics has been reported. This type of fabric has potential application in the field of protective clothing.


Author(s):  
Zuzanna Żołek-Tryznowska ◽  
◽  
Marta Więcek ◽  

Nowadays, printing products might be finished in various ways. Varnishing process is one of the most popular finishing method which gives various effect, such as mate, glossy etc. However, the varnish layer applied on the paper is very thin, therefore it can be invisible to the naked human eye. The aim of this work was to use contact angle measurement and surface free energy determination as a tool to assess the effect of printing and varnishing process of paper materials. We have used various tools in order to analyses the changes of surface: surface roughness, gloss, water contact angle absorption and surface free energy determination. Those tools were used in order to confirm whether the print has been covered with varnish or not. In this work six various paper substrates were used (glossy, coated and un-coated papers). The printing and varnishing was performed in laboratory conditions using flexographic water-based printing and waterbased varnish. Samples were prepared as follows: paper with ink coating, paper with varnish coating and paper with ink layer and varnish layer on the top. The surface roughness was determinated of all samples and compared. The surface roughness changes were observed for pure paper, overprinted and overvarnished. Next, the gloss of samples prior and after printing and varnishing was measured. The gloss of the samples increases when they are printed or varnished, what is related with properties of ink and varnish. Also, the thickness of ink and varnish layers was determinated. The thickness of the samples increases when the number of layers increases. Finally, the water contact angle was measured and surface free energy was calculated with Owens-Wendt method. Our results reveal the possibility of using various tools in order to confirm the performance of varnishing of the prints. The printing with various colors is always seen by the naked human eye. On the other hand, the varnish layer might be not visible. However, such a comparison is not possible if we do not have the pure paper substrates prior printing or varnish.


Sign in / Sign up

Export Citation Format

Share Document