scholarly journals Combination of β Adrenergic Receptor Block and Renin–Angiotensin System Inhibition Diminished the Angiotensin II-Induced Vasoconstriction and Increased Bradykinin-Induced Vasodilation in Hypertension

Dose-Response ◽  
2017 ◽  
Vol 15 (4) ◽  
pp. 155932581773793 ◽  
Author(s):  
Diego Lezama-Martínez ◽  
Ignacio Valencia-Hernández ◽  
Jazmin Flores-Monroy ◽  
Luisa Martínez-Aguilar

In hypertension, the combination therapy is frequently used to obtain a better therapeutic effect and reduce adverse effects. One effective combination is with inhibitors and β-blockers of renin–angiotensin system. Although the mechanisms of action of each drug are already known, the antihypertensive mechanism is more complex and therefore the combined treatment mechanism is unclear. Specifically, the effect of the treatments of angiotensin-converting enzyme inhibitor or AT1 receptor antagonist with β-blocker on the angiotensin II and bradykinin reactivity has not been studied. For this reason, we evaluated the interaction between propranolol and captopril or losartan on vascular reactivity to bradykinin and angiotensin II in spontaneously hypertensive rat. We constructed concentration–response curves to angiotensin II and bradykinin after treatment of SHR with propranolol–captopril or propranolol–losartan by using rat aortic rings. While losartan or captopril with propranolol potentiated bradykinin-induced vasodilation effect, the propranolol–losartan interaction decreased the angiotensin II-induced vasoconstriction. In addition, the combinations did not reduce the heart rate significantly. These results suggest that the combined therapy decreased blood pressure to normotensive values and showed less effect for angiotensin II and greater effect for bradykinin than monotherapy which could contribute in the antihypertensive effect.

2013 ◽  
Vol 1 (1) ◽  
pp. 18-20
Author(s):  
Eqerem Hasani ◽  
Alma Idrizi ◽  
Myftar Barbullushi

Aim: Aim of the study was the evaluation of the effect of dual blockade of the renin-angiotensin system (RAS) on proteinuria. Material and Methods: Sixty patients, included in the study, were treated with angiotensin-converting enzyme inhibitor and angiotensin receptor blocker for a period of 3 months. Results: The dual blockade of RAS resulted with decrease of proteinuria, a slight increase of serum creatinine and was not associated with a lowering of blood pressure.Conclusion: Combined therapy with ACE-I and ARB results in a more complete blockade of the RAS than monotherapy. In proteinuric nephropathies it reduces significantly baseline proteinuria.


1985 ◽  
Vol 248 (2) ◽  
pp. R157-R160 ◽  
Author(s):  
R. J. Balment ◽  
S. Carrick

High rates of drinking in seawater-adapted, compared with freshwater (FW)-adapted, flounder were associated with raised plasma chloride and osmotic concentrations. Hypotension in FW-adapted fish, after papaverine administration, gave rise to greatly elevated rates of drinking. This dipsogenic response apparently relied on activation of the endogenous renin-angiotensin system (RAS) and was abolished by simultaneous administration of the converting enzyme inhibitor, captopril. Exogenous angiotensin II was shown to be dipsogenic and vasopressor in the FW-adapted fish. The physiological importance of the activation of the RAS in the control of drinking behavior in euryhaline fish is discussed.


1999 ◽  
Vol 77 (12) ◽  
pp. 974-979 ◽  
Author(s):  
Orit Shechtman ◽  
Zhongjie Sun ◽  
Melvin J Fregly ◽  
Michael J Katovich

Chronic exposure of rats to cold for 1-3 weeks results in a mild form of hypertension. The renin-angiotensin system (RAS) has been implicated in this model of cold-induced hypertension. Previously we have characterized the vascular responsiveness in cold-acclimated animals, using aortic tissue, and recent studies have focused on the thermoregulatory responses of angiotensin II (AngII), utilizing the tail artery of the rat. Therefore in the current study we evaluated the vascular responsiveness of cold-treated rats to AngII in both aorta and tail artery at 2 and 4 weeks of cold exposure (5 ± 2°C). Systolic blood pressures were significantly elevated in cold-treated animals compared with control animals at both 2 and 4 weeks of cold exposure. At both of these time points body weights were reduced and ventricular weights were increased in cold-treated animals. After 2 weeks of cold exposure the vascular responsiveness of the aorta to AngII was significantly lower than that of controls. This vascular responsiveness to AngII was elevated and returned to control levels after 5 weeks of cold exposure. However, this pattern was not observed in the tail artery. The vascular responsiveness of tail artery rings from cold-treated rats to AngII was significantly greater than that of control animals during both 2 and 5 weeks of exposure to cold. The vascular contractile responses of both the aorta and tail artery to KCl in the cold-treated animals was not different from that of the control animals maintained at ambient room temperature, suggesting that the vascular smooth muscle contractile components were not altered by the cold exposure. Thus, the in vitro vascular reactivity to the receptor-mediated vasoconstrictor AngII was decreased in the sparsely innervated aorta and increased in the more densely innervated tail artery of the cold-treated animals when compared with controls. These results suggest that the increased responsiveness of AngII on the smooth muscle of the tail artery may play a role in adaptation to the cold and the maintenance of cold-induced hypertension.Key words: cold exposure, hypertension, renin-angiotensin system, vascular responsiveness, angiotensin II.


1998 ◽  
Vol 158 (2) ◽  
pp. 153-159 ◽  
Author(s):  
GP Vinson ◽  
R Teja ◽  
MM Ho ◽  
JP Hinson ◽  

The tissue renin-angiotensin systems (RAS) may have specific roles that complement those of the systemic RAS. In the adrenal, the tissue RAS has been implicated in the regulation of glomerulosa tissue growth and function, and in mediating the response of the tissue to stimulation by ACTH and potassium ions. To examine the role of the rat adrenal tissue RAS in its response to angiotensin II stimulation, adrenals were incubated either as bisected glands or as separated capsular glands (largely glomerulosa) under control conditions, or in the presence of the angiotensin-converting enzyme inhibitor captopril, or of angiotensin II, or both. Captopril inhibited the two different tissue preparations in different ways. In the capsular gland it inhibited basal aldosterone output, but facilitated its response to angiotensin II. In the bisected gland, captopril inhibited the response of aldosterone to angiotensin II. Other data suggest that one way in which captopril functions is by preventing the conversion of fasciculata-generated 18-hydroxydeoxycorticosterone (18-OH-DOC) to aldosterone in the glomerulosa. Immunolocalisation of 18-OH-DOC in perfused rat adrenal confirms that one function of angiotensin II is to mobilise tissue-sequestered 18-OH-DOC. The results illustrate the importance of tissue RAS in the synthesis of aldosterone and the response to angiotensin II.


2007 ◽  
Vol 293 (6) ◽  
pp. H3726-H3731 ◽  
Author(s):  
Donald D. Lund ◽  
Robert M. Brooks ◽  
Frank M. Faraci ◽  
Donald D. Heistad

Endotoxin [or lipopolysaccharide (LPS)] increases levels of superoxide in blood vessels and impairs vasomotor function. Angiotensin II plays an important role in the generation of superoxide in several disease states, including hypertension and heart failure. The goal of this study was to determine whether the activation of the renin-angiotensin system contributes to oxidative stress and endothelial dysfunction after endotoxin. We examined the effects of enalapril (an angiotensin-converting enzyme inhibitor) or L-158809 (an angiotensin receptor blocker) on increases of superoxide and vasomotor dysfunction in mice treated with LPS. C57BL/6 mice were treated with either enalapril (60 mg·kg−1·day−1) or L-158809 (30 mg·kg−1·day−1) for 4 days. After the third day, LPS (10–20 mg/kg) or vehicle was injected intraperitoneally, and one day later, vasomotor function of the aorta was examined in vitro. After precontraction with PGF2α, the maximal responses to sodium nitroprusside were similar in the aorta from normal and LPS-treated mice. In contrast, the relaxation to acetylcholine was impaired after LPS (54 ± 5% at 10−5, mean ± SE) compared with vessels treated with vehicle (88 ± 1%; P < 0.05). Enalapril improved ( P < 0.05) relaxation in response to acetylcholine to 81 ± 6% after LPS. L-158809 also improved relaxation in response to acetylcholine to 77 ± 4% after LPS. Superoxide (measured with lucigenin and hydroethidine) was increased ( P < 0.05) in aorta after LPS, and levels were reduced ( P < 0.05) following enalapril and L-158809. Thus, after LPS, enalapril and L-158809 reduce superoxide levels and improve relaxation to acetylcholine in the aorta. The findings suggest that activation of the renin-angiotensin system contributes importantly to oxidative stress and endothelial dysfunction after endotoxin.


TH Open ◽  
2020 ◽  
Vol 04 (02) ◽  
pp. e138-e144 ◽  
Author(s):  
Wolfgang Miesbach

AbstractThe activated renin–angiotensin system induces a prothrombotic state resulting from the imbalance between coagulation and fibrinolysis. Angiotensin II is the central effector molecule of the activated renin–angiotensin system and is degraded by the angiotensin-converting enzyme 2 to angiotensin (1–7). The novel coronavirus infection (classified as COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as acute respiratory distress syndrome, sepsis, and death in a proportion of patients, mostly elderly patients with preexisting comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 receptor to enter the target cells, resulting in activation of the renin–angiotensin system. After downregulating the angiotensin-converting enzyme 2, the vasoconstrictor angiotensin II is increasingly produced and its counterregulating molecules angiotensin (1–7) reduced. Angiotensin II increases thrombin formation and impairs fibrinolysis. Elevated levels were strongly associated with viral load and lung injury in patients with severe COVID-19. Therefore, the complex clinical picture of patients with severe complications of COVID-19 is triggered by the various effects of highly expressed angiotensin II on vasculopathy, coagulopathy, and inflammation. Future treatment options should focus on blocking the thrombogenic and inflammatory properties of angiotensin II in COVID-19 patients.


1977 ◽  
Vol 232 (5) ◽  
pp. F434-F437 ◽  
Author(s):  
R. H. Freeman ◽  
J. O. Davis ◽  
W. S. Spielman

Suprarenal aortic constriction sufficient to reduce renal perfusion pressure by approximately 50% increased aldosterone secretion in anesthetized rats pretreated with dexamethasone. Bilateral nephrectomy under the same experimental conditions blocked the aldosterone response. Additionally, [1-sarcosine, 8-alanine]angiotensin II blocked the response in aldosterone secretion to aortic constriction in dexamethasone-treated rats. Finally, in rats hypophysectomized to exclude the influence of ACTH, the aldosterone response to aortic constriction was blocked by [1-sarcosine, 8-alanine]angiotensin II. The results indicate that angiotensin II increased aldosterone secretion during aortic constriction in the rat. These observations, along with those reported previously in sodium-depleted rats, point to an important overall role for the renin-angiotensin system in the control of aldosterone secretion in the rat.


Sign in / Sign up

Export Citation Format

Share Document