scholarly journals Susceptibility Assessment of Methicillin-Resistant Staphylococcus aureus Strains to Lepidium sativum Extract

Dose-Response ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 155932581985042
Author(s):  
Amna A. Saddiq ◽  
Azza M. Mohamed

Many plant-derived compounds have been used to treat microbial infections. Staphylococcus aureus a common cause of many organ infections, has generated increasing concern due to its resistance to antibacterial drugs. This work was carried out to explore the susceptibility of 6 strains (LN872136, LN872137, LN871238, LN871239, LN872140, and LN871241) of methicillin-resistant Staphylococcus aureus to aqueous extract of Lepidium sativum seeds in vitro. Various concentrations (5-20 mg/mL) were used to evaluate the effect of the extract on bacteria growth via the assessment of the microbial biomass and the inhibition zone (IZ). The results showed that the plant extract at 15 or 20 mg/mL, significantly decreased the the biomass of S aureus strains after 24 or 48 hours exposure period. Staphylococcus aureus (LN871241) showed the largest IZ at 20 mg/mL and documented by scanning electron microscope. The current work may suggest that L sativum seed extract can be candidate as a promising antimicrobial agent to treat infection with methicillin-resistant S aureus.

Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 730
Author(s):  
Nicolás Gómez-Sequeda ◽  
Marlon Cáceres ◽  
Elena E. Stashenko ◽  
William Hidalgo ◽  
Claudia Ortiz

The emergence of multidrug resistant microorganisms represents a global challenge due to the lack of new effective antimicrobial agents. In this sense, essential oils (EOs) are an alternative to be considered because of their anti-inflammatory, antiviral, antibacterial, and antibiofilm biological activities. Therefore, multiple efforts have been made to consider the potential use of EOs in the treatment of infections which are caused by resistant microorganisms. In this study, 15 EOs of both Colombian and introduced aromatic plants were evaluated against pathogenic strains of E. coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA) in planktonic and sessile states in order to identify relevant and promising alternatives for the treatment of microbial infections. Forty different compounds were identified in the 15 EO with nine of them constituted mainly by oxygenated monoterpenes (OM). EOs from Lippia origanoides, chemotypes thymol, and carvacrol, displayed the highest antibacterial activity against E. coli O157:H7 (MIC50 = 0.9 and 0.3 mg/mL, respectively) and MRSA (MIC50 = 1.2 and 0.6 mg/mL, respectively). These compounds from EOs had also the highest antibiofilm activity (inhibition percentage > 70.3%). Using scanning electron microscopy (SEM), changes in the size and morphology of both bacteria were observed when they were exposed to sub-inhibitory concentrations of L. origanoides EO carvacrol chemotype. EOs from L. origanoides, thymol, and carvacrol chemotypes represented a viable alternative for the treatment of microbial infections; however, the Selectivity Index (SI ≤ 3) indicated that it was necessary to study alternatives to reduce its in vitro cytotoxicity.


Author(s):  
Halyna Tkachenko ◽  
Natalia Kurhaluk ◽  
Lyudmyla Buyun ◽  
Vladimir Tomin

The antimicrobial activities of ethanolic extracts obtained from the leaves of Begonia solimutata L.B. Sm. & Wassh., Begonia goegoensis N.E.Br., Begonia foliosa Kunth, Begonia × erythrophylla Hérincq, Begonia thiemei C.DC., Begonia peltata Otto & Dietr., Begonia heracleifolia Cham. & Schltdl., Begonia dregei Otto & Dietr., and Begonia mexicana G. Karst. ex Fotsch were assessed against methicillin-resistant Staphylococcus aureus (MRSA) strain. The leaves were brought into the laboratory for antimicrobial studies. Freshly crushed leaves were washed, weighed, and homogenized in 96% ethanol (in proportion 1:19) at room temperature. The extracts were then filtered and investigated for their antimicrobial activity. The testing of the antibacterial activity of the plant extracts was carried out in vitro by the Kirby-Bauer disc diffusion susceptibility test protocol. The most effective plants among species screened against S. aureus NCTC 12493 growth were B. peltata, B. thiemei, B. foliosa, Begonia × erythrophylla, and B. solimutata being highly active with the ethanolic extracts (diameters of inhibition zone ranged from 12.5 to 21 mm). The ethanolic extracts from nine Begonia plant species were evaluated for their antimicrobial activity against methicillin-resistant S. aureus (MRSA) strain. Extracts from all test Begonia plants caused a remarkable reduction in bacterial growth, measured as an inhibition zone diameters. The diameter of the inhibition zone for B. solimutata was (16.4±1.1) mm, for B. goegoensis – (14.2±1.0) mm, for B. foliosa – (14.9±1.2) mm, for Begonia × erythrophylla – (16.9±0.9) mm, for B. thiemei – (16.8±1.3) mm, for B. peltata – (18.1±0.9) mm, for B. heracleifolia – (15.3±0.9) mm, for B. dregei – (14.7±1.1) mm, and for B. mexicana – (13.8±0.9) mm/ The highly active antimicrobial effects of extracts obtained from B. peltata and B. thiemei noted against S. aureus NCTC 12493 growth is worthy of highlighting. Our studies indicated that Begonia plants are worthy of further investigation as a potential phytotherapeutic agent for treating infections caused by S. aureus., as well as for the development of innovative feed and preventative products in animal husbandry.


Author(s):  
Putra Rahmadea Utami ◽  
Sri Indrayati ◽  
Nur Hayatang

Staphylococcus aureus is a pathogenic bacterium that spread throughout the world and still a problem that continues to increase both in hospitals and the community. Infections due to S. aureus usually treated with antibiotics, but in some cases, several strains of S. aureus found to be resistant to antibiotics, such as Methicillin-Resistant Staphylococcus aureus (MRSA). Based on the previous research, the ethanol extract from Ajwa and Sukkari dates formed an inhibitory zone against the MRSA bacteria growth. This study aims to determine the inhibition of the ethanol extract from Ajwa and Sukkari variety of dates (Phoenix dactylifera L.) on the S. aureus growth. The ethanol extract from Ajwa and Sukkari dates with a concentration of 5 mg/mL, 10 mg/mL, 15 mg/mL, and 20 mg/mL resulted in the same inhibition zone with a diameter of ≤ 6 mm which categorized as weak (resistant), whereas the positive control ciprofloxacin had a resistance zone with a diameter of 9 mm. This study results concluded that the ethanol extract of Ajwa and Sukkari dates only has a maximum concentration of 20 mg/mL, which is still classified as a low concentration and has not been able to inhibit MRSA bacteria growth.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1731
Author(s):  
Yu Maw Htwe ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
Mounica Bandela ◽  
...  

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


Hernia ◽  
2006 ◽  
Vol 10 (2) ◽  
pp. 120-124 ◽  
Author(s):  
A. G. Harrell ◽  
Y. W. Novitsky ◽  
K. W. Kercher ◽  
M. Foster ◽  
J. M. Burns ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document