scholarly journals Buspirone Dose-Response on Facilitating Forelimb Functional Recovery in Cervical Spinal Cord Injured Rats

Dose-Response ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 155932582199813
Author(s):  
Rakib Uddin Ahmed ◽  
V. Reggie Edgerton ◽  
Shuai Li ◽  
Yong-Ping Zheng ◽  
Monzurul Alam

Buspirone, widely used as a neuropsychiatric drug, has also shown potentials for motor function recovery of injured spinal cord. However, the optimum dosages of such treatment remain unclear. In this study, we investigated the dose-response of Buspirone treatment on reaching and grasping function in cervical cord injured rats. Seventeen adult Sprague-Dawley rats were trained to reach and grasp sugar pellets before a C4 bilateral dorsal column crush injury. After 1 week post-injury, the rats were divided into 3 groups to receive 1 of 3 different dosages of Buspirone (i.p., 1 dose/day: 1.5, n = 5; 2.5, n = 6 and 3.5 mg/kg b.w., n = 6). Forelimb reaching and grip strength test were recorded once per week, within 1 hour of Buspirone administration for 11 weeks post-injury. Different dose groups began to exhibit differences in reaching scores from 4 weeks post-injury. From 4-11 weeks post-injury, the reaching scores were highest in the lowest-dose group rats compared to the other 2 dose groups rats. Average grip strength was also found higher in the lowest-dose rats. Our results demonstrate a significant dose-dependence of Buspirone on the recovery of forelimb motor functions after cervical cord injury with the best performance occurring at the lowest dose tested.

2021 ◽  
Vol 15 ◽  
Author(s):  
Yapu Liu ◽  
Qi Liu ◽  
Zhou Yang ◽  
Rong Li ◽  
Zhiping Huang ◽  
...  

Objective: To investigate the neuroprotective effects of trihydroxyethyl rutin in rats with cervical spinal cord hemi-contusion.Methods: Adult male Sprague–Dawley rats were subjected to hemi-contusion at a stroke depth of 1.2 mm, and then intraperitoneally injected with 50 or 100 mg/kg trihydroxyethyl rutin per day for 12 weeks (T50 and T100 groups, respectively). Changes in somatosensory evoked potentials (SEPs), motor evoked potentials (MEPs), and behavior were continuously monitored. At 12 weeks post-injury, immunohistochemical staining was performed to assess changes in cervical spinal cord microvascular morphology. Magnetic resonance imaging (MRI) scans were performed to examine end-stage injury in the cervical spinal cord, and Eriochrome cyanine-stained slices of spinal cord tissue were evaluated for injury.Results: There were no significant differences in biomechanical parameters among the spinal cord injury, T50 and T100 rat groups. At 3 days-post-injury, there was a significant decrease in grip strength. At 12 weeks post-injury, grip strength recovery was significantly better in the T50 and T100 groups than in the injury group. Compared with the injury group, the total limb placement frequency was significantly higher in the T50 group at 2, 4, 6, 10, and 12 weeks post-injury and in the T100 group at 2, 6, 8, and 10 weeks post-injury. Ipsilateral SEPs and MEPs were dynamic, increasing in latency and decreasing in amplitude in the injury compared with sham group. MRI scanning demonstrated that the coronal, sagittal, and transversal lesion areas were smaller in the T50 and T100 groups than in the injury group. Microvascular density showed a greater reduction in the injury group compared with the T50 and T100 groups. Eriochrome cyanine staining showed that the ipsilateral side, residual parenchyma, and gray matter areas were larger in the T50 and T100 groups than in the injury group.Conclusion: Trihydroxyethyl rutin exhibits robust neuroprotective effects, improving limb motor function and nerve electrophysiological parameters after spinal cord injury, maintaining microvascular density, and reducing the area of injury and degree of demyelination.


2001 ◽  
Vol 91 (6) ◽  
pp. 2665-2673 ◽  
Author(s):  
Shi-Yi Zhou ◽  
Gregory J. Basura ◽  
Harry G. Goshgarian

The aim of the present study was to specifically investigate the involvement of serotonin [5-hydroxytryptamine (5-HT2)] receptors in 5-HT-mediated respiratory recovery after cervical hemisection. Experiments were conducted on C2 spinal cord-hemisected, anesthetized (chloral hydrate, 400 mg/kg ip), vagotomized, pancuronium- paralyzed, and artificially ventilated female Sprague-Dawley rats in which CO2 levels were monitored and maintained. Twenty-four hours after spinal hemisection, the ipsilateral phrenic nerve displayed no respiratory-related activity indicative of a functionally complete hemisection. Intravenous administration of the 5-HT2A/2C-receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) induced respiratory-related activity in the phrenic nerve ipsilateral to hemisection under conditions in which CO2 was maintained at constant levels and augmented the activity induced under conditions of hypercapnia. The effects of DOI were found to be dose dependent, and the recovery of activity could be maintained for up to 2 h after a single injection. DOI-induced recovery was attenuated by the 5-HT2-receptor antagonist ketanserin but not with the 5-HT2C-receptor antagonist RS-102221, suggesting that 5-HT2A and not necessarily 5-HT2C receptors may be involved in the induction of respiratory recovery after cervical spinal cord injury.


2002 ◽  
Vol 87 (2) ◽  
pp. 645-652 ◽  
Author(s):  
Xiang Yang Chen ◽  
Jonathan R. Wolpaw

Descending activity from the brain shapes spinal cord reflex function throughout life, yet the mechanisms responsible for this spinal cord plasticity are poorly understood. Operant conditioning of the H-reflex, the electrical analogue of the spinal stretch reflex, is a simple model for investigating these mechanisms. An earlier study in the Sprague-Dawley rat showed that acquisition of an operantly conditioned decrease in the soleus H-reflex is not prevented by mid-thoracic transection of the ipsilateral lateral column (LC), which contains the rubrospinal, reticulospinal, and vestibulospinal tracts, and is prevented by transection of the dorsal column, which contains the main corticospinal tract (CST) and the dorsal column ascending tract (DA). The present study explored the effects of CST or DA transection on acquisition of an H-reflex decrease, and the effects of LC, CST, or DA transection on maintenance of an established decrease. CST transection prior to conditioning prevented acquisition of H-reflex decrease, while DA transection did not do so. CST transection after H-reflex decrease had been acquired led to gradual loss of the decrease over 10 days, and resulted in an H-reflex that was significantly larger than the original, naive H-reflex. In contrast, LC or DA transection after H-reflex decrease had been acquired did not affect maintenance of the decrease. These results, in combination with the earlier study, strongly imply that in the rat the corticospinal tract (CST) is essential for acquisition and maintenance of operantly conditioned decrease in the H-reflex and that other major spinal cord pathways are not essential. This previously unrecognized aspect of CST function gives insight into the processes underlying acquisition and maintenance of motor skills and could lead to novel methods for inducing, guiding, and assessing recovery of function after spinal cord injury.


2019 ◽  
Vol 12 (4) ◽  
pp. 189-198
Author(s):  
Kanyaratana Bamrungsuk ◽  
Anchalee Vattarakorn ◽  
Namphung Thongta ◽  
Kanokwan Tilokskulchai ◽  
Sompol Tapechum ◽  
...  

AbstractBackgroundModels of spinal cord injury (SCI) caused by weight-drop devices to cause contusion have been used extensively, and transient behavioral deficits after thoracic injury have been demonstrated. The severity of the injury caused by the device should be mild enough to allow recovery.ObjectiveTo determine whether our adapted weight-drop device with a small tip can effectively induce mild hemicontusion at the level of the fifth cervical vertebra.MethodsWe divided 15 adult male Sprague Dawley rats into groups of 5 for the following treatments: sham (SH, laminectomy only), mild (MSCI) or severe SCI (SSCI). Behavioral tests and histopathology were used before (day 1) and after the treatment on days 3, 7, 14, 21, 28, and 35 to assess the injury.ResultsRats with SSCI showed a significant somatosensory deficit on days 3 and 7 compared with rats in the SH group, recovering by day 14. In a horizontal-ladder test of skilled locomotion, rats with SSCI showed a significant increase in error scores and percentage of total rungs used, and a decrease in the percentage of correct paw placement compared with rats in the SH group. There was greater recovery to normal paw placement by rats with MSCI than by rats with SSCI. These behavioral deficits were consistent with histopathology using hematoxylin and eosin counterstained Luxol fast blue, indicating the degree of injury and lesion area.ConclusionsMild hemicontusion caused by the adapted device can be used to evaluate SCI and provides a model with which to test the efficacy of translational therapies for SCI.


Author(s):  
Tim Fischer ◽  
Christoph Stern ◽  
Patrick Freund ◽  
Martin Schubert ◽  
Reto Sutter

Abstract Objectives Wallerian degeneration (WD) is a well-known process after nerve injury. In this study, occurrence of remote intramedullary signal changes, consistent with WD, and its correlation with clinical and neurophysiological impairment were assessed after traumatic spinal cord injury (tSCI). Methods In 35 patients with tSCI, WD was evaluated by two radiologists on T2-weighted images of serial routine MRI examinations of the cervical spine. Dorsal column (DC), lateral corticospinal tract (CS), and lateral spinothalamic tract (ST) were the analyzed anatomical regions. Impairment scoring according to the American Spinal Injury Association Impairment Scale (AIS, A–D) as well as a scoring system (0–4 points) for motor evoked potential (MEP) and sensory evoked potential (SEP) was included. Mann-Whitney U test was used to test for differences. Results WD in the DC occurred in 71.4% (n = 25), in the CS in 57.1% (n = 20), and in 37.1% (n = 13) in the ST. With WD present, AIS grades were worse for all tracts. DC: median AIS B vs D, p < 0.001; CS: B vs D, p = 0.016; and ST: B vs D, p = 0.015. More pathological MEP scores correlated with WD in the DC (median score 0 vs 3, p < 0.001) and in the CS (0 vs 2, p = 0.032). SEP scores were lower with WD in the DC only (1 vs 2, p = 0.031). Conclusions WD can be detected on T2-weighted scans in the majority of cervical spinal cord injury patients and should be considered as a direct effect of the trauma. When observed, it is associated with higher degree of impairment. Key Points • Wallerian degeneration is commonly seen in routine MRI after traumatic spinal cord injury. • Wallerian degeneration is visible in the anatomical regions of the dorsal column, the lateral corticospinal tract, and the lateral spinothalamic tract. • Presence of Wallerian degeneration is associated with higher degree of impairment.


2020 ◽  
Vol 123 (1) ◽  
pp. 158-166 ◽  
Author(s):  
Trevor S. Barss ◽  
Behdad Parhizi ◽  
Vivian K. Mushahwar

It has been established that coordinated arm and leg (A&L) cycling facilitates corticospinal drive and modulation of cervico-lumbar connectivity and ultimately improves overground walking in people with incomplete spinal cord injury or stroke. This study examined the effect of noninvasive transcutaneous spinal cord stimulation (tSCS) on the modulation of cervico-lumbar connectivity. Thirteen neurologically intact adults participated in the study. The excitability of the Hoffmann (H) reflex elicited in the soleus muscle was examined under multiple conditions involving either the arms held in a static position or rhythmic arm cycling while tSCS was applied to either the cervical or lumbar cord. As expected, soleus H-reflex amplitude was significantly suppressed by 19.2% during arm cycling (without tSCS) relative to arms static (without tSCS). Interestingly, tSCS of the cervical cord with arms static significantly suppressed the soleus H-reflex (−22.9%), whereas tSCS over the lumbar cord did not suppress the soleus H-reflex (−3.8%). The combination of arm cycling with cervical or lumbar tSCS did not yield additional suppression of the soleus H-reflex beyond that obtained with arm cycling alone or cervical tSCS alone. The results demonstrate that activation of the cervical spinal cord through both rhythmic arm cycling and tonic tSCS significantly modulates the activity of lumbar networks. This highlights the potential for engaging cervical spinal cord networks through tSCS during rehabilitation interventions to enhance cervico-lumbar connectivity. This connectivity is influential in facilitating improvements in walking function after neurological impairment. NEW & NOTEWORTHY This is the first study to investigate the modulatory effects of transcutaneous spinal cord stimulation (tSCS) on cervico-lumbar connectivity. We report that both rhythmic activation of the cervical spinal cord through arm cycling and tonic activation of the cervical cord through tSCS significantly modulate the activity of lumbar networks. This suggests that engaging cervical spinal cord networks through tSCS during locomotor retraining interventions may not only enhance cervico-lumbar connectivity but also further improve walking capacity.


2021 ◽  
Author(s):  
Benjamin C. Gadomski ◽  
Bradley J. Hindman ◽  
Mitchell I. Page ◽  
Franklin Dexter ◽  
Christian M. Puttlitz

Background In a closed claims study, most patients experiencing cervical spinal cord injury had stable cervical spines. This raises two questions. First, in the presence of an intact (stable) cervical spine, are there tracheal intubation conditions in which cervical intervertebral motions exceed physiologically normal maximum values? Second, with an intact spine, are there tracheal intubation conditions in which potentially injurious cervical cord strains can occur? Methods This study utilized a computational model of the cervical spine and cord to predict intervertebral motions (rotation, translation) and cord strains (stretch, compression). Routine (Macintosh) intubation force conditions were defined by a specific application location (mid-C3 vertebral body), magnitude (48.8 N), and direction (70 degrees). A total of 48 intubation conditions were modeled: all combinations of 4 force locations (cephalad and caudad of routine), 4 magnitudes (50 to 200% of routine), and 3 directions (50, 70, and 90 degrees). Modeled maximum intervertebral motions were compared to motions reported in previous clinical studies of the range of voluntary cervical motion. Modeled peak cord strains were compared to potential strain injury thresholds. Results Modeled maximum intervertebral motions occurred with maximum force magnitude (97.6 N) and did not differ from physiologically normal maximum motion values. Peak tensile cord strains (stretch) did not exceed the potential injury threshold (0.14) in any of the 48 force conditions. Peak compressive strains exceeded the potential injury threshold (–0.20) in 3 of 48 conditions, all with maximum force magnitude applied in a nonroutine location. Conclusions With an intact cervical spine, even with application of twice the routine value of force magnitude, intervertebral motions during intubation did not exceed physiologically normal maximum values. However, under nonroutine high-force conditions, compressive strains exceeded potentially injurious values. In patients whose cords have less than normal tolerance to acute strain, compressive strains occurring with routine intubation forces may reach potentially injurious values. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


Author(s):  
Tzu-Ting Chiu ◽  
Kun-Ze Lee

Cervical spinal cord injury typically results in respiratory impairments. Clinical and animal studies have demonstrated that respiratory function can spontaneously and partially recover over time after injury. However, it remains unclear whether respiratory recovery is associated with alterations in metabolism. The present study was designed to comprehensively examine ventilation and metabolism in a rat model of spinal cord injury. Adult male rats received sham (i.e., laminectomy) or unilateral mid-cervical contusion injury (height of impact rod: 6.25 or 12.5 mm). Breathing patterns and whole-body metabolism (O2 consumption and CO2 production) were measured using a whole-body plethysmography system conjugated with flow controllers and gas analyzer at the acute (1 day post-injury), subchronic (2 weeks post-injury), and chronic (8 weeks post-injury) injury stages. The results demonstrated that mid-cervical contusion caused a significant reduction in the tidal volume. Although the tidal volume of contused animals can gradually recover, it remains lower than that of uninjured animals at the chronic injury stage. While O2 consumption and CO2 production were similar between uninjured and contused animals at the acute injury stage, these two metabolic parameters were significantly reduced in contused animals at the subchronic to chronic injury stages. Additionally, the relationships between ventilation, metabolism, and body temperature were altered by cervical spinal cord injury. These results suggest that cervical spinal cord injury causes a complicated reconfiguration of ventilation and metabolism that may enable injured animals to maintain a suitable homeostasis for adapting to the pathophysiological consequences of injury.


Sign in / Sign up

Export Citation Format

Share Document