Urinary Iodine Concentration of Pregnant Women and Female Adolescents as an Indicator of Excessive Iodine Intake in Sri Lanka

2006 ◽  
Vol 27 (1) ◽  
pp. 12-18 ◽  
Author(s):  
K. D. Renuka R. Silva ◽  
D. Lalani ◽  
L. Munasinghe
Mediscope ◽  
2018 ◽  
Vol 5 (2) ◽  
pp. 30-35
Author(s):  
GM Molla

Iodine is a micronutrient, which is essential for the synthesis of thyroid hormones. Thyroid hormones play a major role in the development of different functional components in different stages of life. The relationship between iodine intake level of a population and occurrences of thyroid disorders U-shaped with an increase from both low and high iodine intake. Iodine deficiency disorders (IDDs) are a major health problem worldwide in all age groups, but infants, school children, and pregnant and lactating women are vulnerable. During pregnancy and lactation, the fetus and infants are sensitive to maternal iodine intake. Even mild iodine deficiency may lead to irreversible brain damage during this period. A main cause of IDDs of neonates and infants is maternal iodine deficiency. Universal salt iodization strategy has been initiated by the World Health Organization and United Nation International Children Emergency Fund by the year 1993 for correction and prevention of iodine deficiency. Excessive iodine causes hypothyroidism, iodine-induced hyperthyroidism and autoimmune thyroid diseases. Iodine deficiency and excessive iodine, both cause goiter. There are many indicators for assessing the IDDs, such as measurement of thyroid size by palpation or ultrasonography, serum thyroid stimulating hormone, and thyroglobulin but these are less sensitive, costly and sometimes interpretation is difficult. Urinary iodine concentration (UIC) is a well-accepted, cost-efficient, and easily obtainable indicator of iodine status. Since the majority of iodine absorbed by the body is excreted in the urine, it is considered a sensitive marker of current iodine intake and can reflect recent changes in iodine status. Iodine requirements are greatly increased during pregnancy and lactation, owing to metabolic changes. During intrauterine life, maternal iodine is the only source of iodine for a fetus. UIC determines the iodine status of pregnant and lactating women. Breast milk is the only source of iodine for exclusively breastfed neonates and infants. Breast milk iodine concentration can be determined by UIC. UIC predicts the adverse health consequences of excessive iodine intake such as goiter, hypothyroidism, and hyperthyroidism. This review presents that iodine status in different groups of a population can be determined by UIC which will be helpful in assessing the iodine status in a community, finding out the cause of thyroid disorders, to predict the risk of adverse health effects of iodine deficiency and excessive iodine, and in making plan for iodine supplementation.Mediscope Vol. 5, No. 2: Jul 2018, Page 30-35


2015 ◽  
Vol 113 (6) ◽  
pp. 944-952 ◽  
Author(s):  
Dominique Condo ◽  
Maria Makrides ◽  
Sheila Skeaff ◽  
Shao J. Zhou

Adequate iodine is important during pregnancy to ensure optimal growth and development of the offspring. We validated an iodine-specific FFQ (I-FFQ) for use in Australian pregnant women. A forty-four-item I-FFQ was developed to assess iodine intake from food and was administered to 122 pregnant women at 28 weeks gestation. Iodine supplement use was captured separately at 28 weeks gestation. Correlation between iodine intake from food estimated using the I-FFQ and a 4 d weighed food record as well as correlation between total iodine intake and 24 h urinary iodine excretion (UIE), 24 h urinary iodine concentration (UIC), spot UIC and thyroid function were assessed at 28 weeks gestation. A moderate correlation between the two dietary methods was shown (r0·349,P< 0·001), and it was strengthened with the addition of iodine supplements (r0·876,P< 0·001). There was a fair agreement (k= 0·28,P< 0·001) between the two dietary measures in the classification of women as receiving adequate ( ≥ 160 μg/d) or inadequate ( < 160 μg/d) iodine intake from food, but the limits of agreement from the Bland–Altman plot were large. Total iodine intake was associated with 24 h UIE (β = 0·488,P< 0·001) but not with spot UIC. Iodine intake from food using the I-FFQ was assessed at study entry ( < 20 weeks gestation) in addition to 28 weeks gestation, and there was a strong correlation in iodine intake at the two time points (r0·622,P< 0·001), which indicated good reproducibility. In conclusion, the I-FFQ provides a valid tool for estimating iodine intake in pregnant women and can be used to screen women who are at risk of inadequate intake.


2020 ◽  
Vol 26 (2) ◽  
pp. 63-69
Author(s):  
Scrinic Olesea ◽  
Delia Corina Elena ◽  
Toma Geanina Mirela ◽  
Circo Eduard

Abstract Objective: Assessment of iodine nutritional status in pregnant women in the perimarine area of Romania, a region without iodine deficiency. Adequate iodine intake is the main source for normal thyroid function, ensuring the need for maternal thyroid hormones during pregnancy, but also for the development and growth of children in the fetal and postpartum period. Material and method: Prospective study performed on 74 pregnant women in the first 2 trimesters of pregnancy, originating from the perimarin area. The following indicators of iodine status were analyzed: urinary iodine concentration (UIC), the ratio between urinary iodine concentration and urinary creatinine (UIC/UCr), the prevalence of maternal goiter and the value of neonatal TSH (thyroid stimulating hormone). Results: The mean gestational age was 11 weeks. The ways of iodine intake are: iodized salt - 59.4%, iodized salt and iodine supplements- 23%, only iodine supplements -10.8% and 6.8% consume only non-iodized salt. The median of UIC was 133.03 mcg/l considered insufficient iodine intake (normal in pregnancy UIC >150 mcg/l), but the adjustment of UIC to urinary creatinine reveals a median of 152.83 mcg/g, a value that reflects an adequate iodine intake. The prevalence of goiter was 25.6% characteristic for a moderate iodine deficiency. The prevalence of neonatal TSH >5 mIU/L was registered in 18.8% characteristic of mild iodine deficiency. Conclusions: Monitoring of the iodine nutritional status is recommended for the prevention of disorders due to iodine deficiency under the conditions of universal salt iodization. Perimarine areas considered sufficient in iodine may show variations in iodine status in subpopulations under certain physiological conditions, such as pregnancy. An indicator of iodine status of the population is UIC, but the UIC/UCr ratio may be a more optimal indicator for pregnant women, to avoid possible overestimated results of iodine deficiency in pregnancy.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3483
Author(s):  
Inger Aakre ◽  
Lidunn Tveito Evensen ◽  
Marian Kjellevold ◽  
Lisbeth Dahl ◽  
Sigrun Henjum ◽  
...  

Seaweeds, or macroalgae, may be a good dietary iodine source but also a source of excessive iodine intake. The main aim in this study was to describe the iodine status and thyroid function in a group of macroalgae consumers. Two urine samples were collected from each participant (n = 44) to measure urinary iodine concentration (UIC) after habitual consumption of seaweed. Serum thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), and peroxidase autoantibody (TPOAb), were measured in a subgroup (n = 19). A food frequency questionnaire and an iodine-specific 24 h recall were used to assess iodine intake and macroalgae consumption. The median (p25–p75) UIC was 1200 (370–2850) μg/L. Median (p25–p75) estimated dietary iodine intake, excluding macroalgae, was 110 (78–680) μg/day, indicating that seaweed was the major contributor to the iodine intake. TSH levels were within the reference values, but higher than in other comparable population groups. One third of the participants used seaweeds daily, and sugar kelp, winged kelp, dulse and laver were the most common species. Labelling of iodine content was lacking for a large share of the products consumed. This study found excessive iodine status in macroalgae consumers after intake of dietary seaweeds. Including macroalgae in the diet may give excessive iodine exposure, and consumers should be made aware of the risk associated with inclusion of macroalgae in their diet.


2007 ◽  
Vol 10 (12A) ◽  
pp. 1584-1595 ◽  
Author(s):  
Michael B Zimmermann

AbstractObjectives:Monitoring of iodine status during pregnancy, lactation and infancy is difficult as there are no established reference criteria for urinary iodine concentration (UI) for these groups; so it is uncertain whether iodized salt programs meet the needs of these life stages.Design and Subjects:The method used in this paper was: 1) to estimate the median UI concentration that reflects adequate iodine intake during these life stages; and 2) to use these estimates in a review of the literature to assess whether salt iodisation can control iodine deficiency in pregnant and lactating women, and their infants.Results:For pregnancy, recommended mean daily iodine intakes of 220-250 μg were estimated to correspond to a median UI concentration of about 150 μg l− 1, and larger surveys from the iodine sufficient countries have reported a median UI in pregnant women ≥ 140 μg l− 1. Iodine supplementation in pregnant women who are mild-to-moderately iodine deficient is beneficial, but there is no clear affect on maternal or newborn thyroid hormone levels. In countries where the iodine intake is sufficient, most mothers have median breast milk iodine concentration (BMIC) greater than the concentration (100-120 μg l− 1) required to meet an infant's needs. The median UI concentration during infancy that indicates optimal iodine nutrition is estimated to be ≥ 100 μg l− 1. In iodine-sufficient countries, the median UI concentration in infants ranges from 90-170 μg l− 1, suggesting adequate iodine intake in infancy.Conclusions:These findings suggest pregnant and lactating women and their infants in countries with successful sustained iodised salt programs have adequate iodine status.


2007 ◽  
Vol 10 (12A) ◽  
pp. 1596-1599 ◽  
Author(s):  
Fereidoun Azizi

AbstractObjective: To describe studies evaluating urinary iodine excretion during pregnancy and lactation in women living in cities with adequate or more than adequate iodine intake.Design: Cross-sectional study conducted between 1996 and 1998 in pregnant women and a study of lactating women conducted in 2003.Settings and Subjects: Pregnant women attending prenatal clinics in four cities in the Islamic Republic of Iran. Urinary iodine excretion and thyroid volume was measured in 403 women. In a second study, 100 lactating women from Taleghani Hospital in Gorgan, Iran were evaluated for thyroid size, and both urinary and breast milk iodine concentrations were determined.Results: In Rasht city, 84% of pregnant women had a urinary iodine concentration of ≥ 200 μg l-1, while in the other cities this percentage ranged from 45 to 55%. When data were combined for the cities of Ilam, Isfahan and Tehran, where women have an adequate or more than adequate median urinary iodine concentration, 51% of pregnant women had a urinary iodine concentration less than that recommended during pregnancy. In Rasht, where the median urinary iodine concentration indicates an excessive iodine intake, 15.4% of pregnant women had a urinary iodine concentration < 200 μg l-1. The mean urinary iodine concentration in lactating women was 250 μg l-1, and 16% of women had a urinary iodine concentration < 100 μg l-1. Grade 1 goitre was present in 8% of lactating women, and another 8% had grade 2 goitre.Conclusions: Findings of this study call for further attention to iodine intake during pregnancy and lactation. The currently recommended intake of iodine through universal salt iodisation may not be adequate for pregnant and lactating women, and supplementation during pregnancy and lactation should be further considered in light of the latest recommendations.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 858
Author(s):  
Tedson Lukindo ◽  
Ray Masumo ◽  
Adam Hancy ◽  
Sauli E. John ◽  
Heavenlight A. Paulo ◽  
...  

Background: Deficient and excess iodine intake during pregnancy can lead to serious health problems. In Tanzania, information available on iodine status during pregnancy is minimal. The aim of this study was to assess the iodine status and its association with sociodemographic factors in pregnant women in the Mbeya region, Tanzania. Method: A cross sectional survey involving 420 pregnant women (n=420) aged between 15-49 years registered in antenatal care clinics was conducted. Data were collected via interviews and laboratory analysis of urinary iodine concentration (UIC). Results: Median UIC was 279.4μg/L (+/-26.1) to 1915μg/L. Insufficient iodine intake (UIC below 150μg/L) was observed in 17.14% of participants, sufficient intake in 24.29% and 58.57% had intakes above the recommended level (>250μg/L). Rungwe district council (DC) had the highest proportion of patients (27.9%) with low iodine levels, while Chunya and Mbarali DCs had the greatest proportion of those with UIC’s, over the WHO recommended level. Fish consumption and education status were associated with increased risk of insufficient iodine while individuals in Mbalali DC aged between 35-49 years were associated with increased risk of UIC above recommended level. Conclusion: Both deficient and excess iodine intake remains a public health problem, especially in pregnant women in Tanzania. Therefore, educational programs on iodine intake are needed to ensure this population has an appropriate iodine intake to prevent any health risks to the mother and the unborn child.


2008 ◽  
Vol 159 (3) ◽  
pp. 293-299 ◽  
Author(s):  
Rosalinda Y A Camargo ◽  
Eduardo K Tomimori ◽  
Solange C Neves ◽  
Ileana G S Rubio ◽  
Ana Luiza Galrão ◽  
...  

ObjectiveTo evaluate the prevalence of chronic autoimmune thyroiditis (CAT) and iodine-induced hypothyroidism, hyperthyroidism (overt and subclinical), and goiter in a population exposed to excessive iodine intake for 5 years (table salt iodine concentrations: 40–100 mg/kg salt).DesignThis was a population-based, cross-sectional study with 1085 participants randomly selected from a metropolitan area in São Paulo, Brazil, and conducted during the first semester of 2004.MethodsThyroid ultrasound examination was performed in all participants and samples of urine and blood were collected from each subject. Serum levels of thyroid-stimulating hormone, free thyroxine, and anti-thyroid peroxidase (TPO) antibodies, urinary iodine concentration, thyroid volume, and thyroid echogenicity were evaluated. We also analyzed table salt iodine concentrations.ResultsAt the time the study was conducted, table salt iodine concentrations were within the new official limits (20–60 mg/kg salt). Nevertheless, in 45.6% of the participants, urinary iodine excretion was excessive (above 300 μg/l) and, in 14.1%, it was higher than 400 μg/l. The prevalence of CAT (including atrophic thyroiditis) was 16.9% (183/1085), women were more affected than men (21.5 vs 9.1% respectively, P=0.02). Hypothyroidism was detected in 8.0% (87/1085) of the population with CAT. Hyperthyroidism was diagnosed in 3.3% of the individuals (36/1085) and goiter was identified in 3.1% (34/1085).ConclusionsFive years of excessive iodine intake by the Brazilian population may have increased the prevalence of CAT and hypothyroidism in subjects genetically predisposed to thyroid autoimmune diseases. Appropriate screening for early detection of thyroid dysfunction may be considered during excessive nutritional iodine intake.


2021 ◽  
Vol 9 (3) ◽  
pp. 791-799
Author(s):  
Syeda Farha S ◽  
Asna Urooj

During pregnancy, the daily requirement of iodine increases making those most at-risk population for iodine deficiency disorders. The available confined data shows that pregnant women are iodine deficient even in iodine sufficient regions with this background the objectives of the current study were to assess the urinary iodine concentration (UIC) and evaluate the relationship between the levels of hemoglobin, UIC, and thyroid status in first-trimester pregnant women. A cross-sectional hospital-based study with a total sample size of n=110 pregnant women at the13th week of gestation in the Mysuru district was selected. The UIC, anthropometric measurements, iodine intake, and selected biochemical parameters (TSH, FT3, FT4, and Hb) were assessed. The data was analysed using SPSS (v 16.0). Spearman’s rank correlation test was used to analyse correlations. The Mann- Whitney U test was used to compare differences between groups. ANOVA was used to study the comparison of pregnancy complications with UIC and hemoglobin. The median UIC (mUIC) was 194.2 µg/L and Hb was 10.5 g/dL. Even though the mUIC was normal, around 38.2% had insufficient UIC. Significant inverse relationship between UIC and TSH (r = -0.487, p<0.001), Hb and TSH (r = -0.355, p < 0.001), and between TSH and iodine intake (r=-0.476, p<0.001) were observed. It was interesting to observe that those with insufficient UIC were found to have mild anaemia and low FT4 levels and those with excess UIC had lower TSH levels. The pregnant women in the present study were found to have the normal median urinary iodine concentration and were mildly anaemic. Increased attention among pregnant women should be focused on iodine status along with iron status and thyroid functions. Larger comparative studies need to be performed to study the impact of altered iodine status on neonatal outcomes.


Author(s):  
Ilze Konrāde ◽  
Ieva Kalere ◽  
Ieva Strēle ◽  
Marina Makrecka-Kūka ◽  
Vija Veisa ◽  
...  

Abstract In the absence of a mandatory salt iodisation programme, two nationwide cross-sectional cluster surveys revealed persisting iodine deficiency among Latvian schoolchildren during the spring season and a noteworthy iodine deficiency in pregnant women in Latvia; these deficiencies warrant intervention. The consequences of mild-to-moderate iodine deficiency during pregnancy and lactation can adversely affect foetal brain development. Data from a Latvian population survey revealed the consumption of approximately 100 μg of iodine per day through foods and iodised salt. Therefore, strategies to increase the consumption of iodine-containing products should be implemented, particularly for children. In addition, to meet the increased iodine requirement during pregnancy, pregnant women should take daily supplements containing 150 μg iodine from the earliest time possible. All women of childbearing age should be advised to increase their dietary iodine intake by using iodised table salt and iodine-rich products: seafood, milk and milk products. For women with pre-existing thyroid pathologies, the medical decision should be considered on a case-by-case basis. Urinary iodine concentration monitoring among schoolchildren and pregnant women and neonatal thyrotropin registry analysis every five years would be an appropriate strategy for maintaining iodine intake within the interval that prevents iodine deficiency disorders.


Sign in / Sign up

Export Citation Format

Share Document