scholarly journals The impact of iodised salt or iodine supplements on iodine status during pregnancy, lactation and infancy

2007 ◽  
Vol 10 (12A) ◽  
pp. 1584-1595 ◽  
Author(s):  
Michael B Zimmermann

AbstractObjectives:Monitoring of iodine status during pregnancy, lactation and infancy is difficult as there are no established reference criteria for urinary iodine concentration (UI) for these groups; so it is uncertain whether iodized salt programs meet the needs of these life stages.Design and Subjects:The method used in this paper was: 1) to estimate the median UI concentration that reflects adequate iodine intake during these life stages; and 2) to use these estimates in a review of the literature to assess whether salt iodisation can control iodine deficiency in pregnant and lactating women, and their infants.Results:For pregnancy, recommended mean daily iodine intakes of 220-250 μg were estimated to correspond to a median UI concentration of about 150 μg l− 1, and larger surveys from the iodine sufficient countries have reported a median UI in pregnant women ≥ 140 μg l− 1. Iodine supplementation in pregnant women who are mild-to-moderately iodine deficient is beneficial, but there is no clear affect on maternal or newborn thyroid hormone levels. In countries where the iodine intake is sufficient, most mothers have median breast milk iodine concentration (BMIC) greater than the concentration (100-120 μg l− 1) required to meet an infant's needs. The median UI concentration during infancy that indicates optimal iodine nutrition is estimated to be ≥ 100 μg l− 1. In iodine-sufficient countries, the median UI concentration in infants ranges from 90-170 μg l− 1, suggesting adequate iodine intake in infancy.Conclusions:These findings suggest pregnant and lactating women and their infants in countries with successful sustained iodised salt programs have adequate iodine status.

2021 ◽  
Vol 9 (3) ◽  
pp. 791-799
Author(s):  
Syeda Farha S ◽  
Asna Urooj

During pregnancy, the daily requirement of iodine increases making those most at-risk population for iodine deficiency disorders. The available confined data shows that pregnant women are iodine deficient even in iodine sufficient regions with this background the objectives of the current study were to assess the urinary iodine concentration (UIC) and evaluate the relationship between the levels of hemoglobin, UIC, and thyroid status in first-trimester pregnant women. A cross-sectional hospital-based study with a total sample size of n=110 pregnant women at the13th week of gestation in the Mysuru district was selected. The UIC, anthropometric measurements, iodine intake, and selected biochemical parameters (TSH, FT3, FT4, and Hb) were assessed. The data was analysed using SPSS (v 16.0). Spearman’s rank correlation test was used to analyse correlations. The Mann- Whitney U test was used to compare differences between groups. ANOVA was used to study the comparison of pregnancy complications with UIC and hemoglobin. The median UIC (mUIC) was 194.2 µg/L and Hb was 10.5 g/dL. Even though the mUIC was normal, around 38.2% had insufficient UIC. Significant inverse relationship between UIC and TSH (r = -0.487, p<0.001), Hb and TSH (r = -0.355, p < 0.001), and between TSH and iodine intake (r=-0.476, p<0.001) were observed. It was interesting to observe that those with insufficient UIC were found to have mild anaemia and low FT4 levels and those with excess UIC had lower TSH levels. The pregnant women in the present study were found to have the normal median urinary iodine concentration and were mildly anaemic. Increased attention among pregnant women should be focused on iodine status along with iron status and thyroid functions. Larger comparative studies need to be performed to study the impact of altered iodine status on neonatal outcomes.


Mediscope ◽  
2018 ◽  
Vol 5 (2) ◽  
pp. 30-35
Author(s):  
GM Molla

Iodine is a micronutrient, which is essential for the synthesis of thyroid hormones. Thyroid hormones play a major role in the development of different functional components in different stages of life. The relationship between iodine intake level of a population and occurrences of thyroid disorders U-shaped with an increase from both low and high iodine intake. Iodine deficiency disorders (IDDs) are a major health problem worldwide in all age groups, but infants, school children, and pregnant and lactating women are vulnerable. During pregnancy and lactation, the fetus and infants are sensitive to maternal iodine intake. Even mild iodine deficiency may lead to irreversible brain damage during this period. A main cause of IDDs of neonates and infants is maternal iodine deficiency. Universal salt iodization strategy has been initiated by the World Health Organization and United Nation International Children Emergency Fund by the year 1993 for correction and prevention of iodine deficiency. Excessive iodine causes hypothyroidism, iodine-induced hyperthyroidism and autoimmune thyroid diseases. Iodine deficiency and excessive iodine, both cause goiter. There are many indicators for assessing the IDDs, such as measurement of thyroid size by palpation or ultrasonography, serum thyroid stimulating hormone, and thyroglobulin but these are less sensitive, costly and sometimes interpretation is difficult. Urinary iodine concentration (UIC) is a well-accepted, cost-efficient, and easily obtainable indicator of iodine status. Since the majority of iodine absorbed by the body is excreted in the urine, it is considered a sensitive marker of current iodine intake and can reflect recent changes in iodine status. Iodine requirements are greatly increased during pregnancy and lactation, owing to metabolic changes. During intrauterine life, maternal iodine is the only source of iodine for a fetus. UIC determines the iodine status of pregnant and lactating women. Breast milk is the only source of iodine for exclusively breastfed neonates and infants. Breast milk iodine concentration can be determined by UIC. UIC predicts the adverse health consequences of excessive iodine intake such as goiter, hypothyroidism, and hyperthyroidism. This review presents that iodine status in different groups of a population can be determined by UIC which will be helpful in assessing the iodine status in a community, finding out the cause of thyroid disorders, to predict the risk of adverse health effects of iodine deficiency and excessive iodine, and in making plan for iodine supplementation.Mediscope Vol. 5, No. 2: Jul 2018, Page 30-35


2020 ◽  
Vol 26 (2) ◽  
pp. 63-69
Author(s):  
Scrinic Olesea ◽  
Delia Corina Elena ◽  
Toma Geanina Mirela ◽  
Circo Eduard

Abstract Objective: Assessment of iodine nutritional status in pregnant women in the perimarine area of Romania, a region without iodine deficiency. Adequate iodine intake is the main source for normal thyroid function, ensuring the need for maternal thyroid hormones during pregnancy, but also for the development and growth of children in the fetal and postpartum period. Material and method: Prospective study performed on 74 pregnant women in the first 2 trimesters of pregnancy, originating from the perimarin area. The following indicators of iodine status were analyzed: urinary iodine concentration (UIC), the ratio between urinary iodine concentration and urinary creatinine (UIC/UCr), the prevalence of maternal goiter and the value of neonatal TSH (thyroid stimulating hormone). Results: The mean gestational age was 11 weeks. The ways of iodine intake are: iodized salt - 59.4%, iodized salt and iodine supplements- 23%, only iodine supplements -10.8% and 6.8% consume only non-iodized salt. The median of UIC was 133.03 mcg/l considered insufficient iodine intake (normal in pregnancy UIC >150 mcg/l), but the adjustment of UIC to urinary creatinine reveals a median of 152.83 mcg/g, a value that reflects an adequate iodine intake. The prevalence of goiter was 25.6% characteristic for a moderate iodine deficiency. The prevalence of neonatal TSH >5 mIU/L was registered in 18.8% characteristic of mild iodine deficiency. Conclusions: Monitoring of the iodine nutritional status is recommended for the prevention of disorders due to iodine deficiency under the conditions of universal salt iodization. Perimarine areas considered sufficient in iodine may show variations in iodine status in subpopulations under certain physiological conditions, such as pregnancy. An indicator of iodine status of the population is UIC, but the UIC/UCr ratio may be a more optimal indicator for pregnant women, to avoid possible overestimated results of iodine deficiency in pregnancy.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 630 ◽  
Author(s):  
Synne Groufh-Jacobsen ◽  
Lise Mette Mosand ◽  
Ingvild Oma ◽  
Kjersti Sletten Bakken ◽  
Beate Stokke Solvik ◽  
...  

Breastfed infants are dependent on an adequate supply of iodine in human milk for the production of thyroid hormones, necessary for development of the brain. Despite the importance of iodine for infant health, data on Norwegian lactating women are scarce. We measured iodine intake and evaluated iodine status and iodine knowledge among lactating women. From October to December 2018, 133 mother–infant pairs were recruited in a cross-sectional study through two public health care centers in Lillehammer and Gjøvik. Each of the women provided two human milk specimens, which were pooled, and one urine sample for analysis of iodine concentration. We used 24-h dietary recall and food frequency questionnaire (FFQ) to estimate short-term and habitual iodine intake from food and supplements. The median (P25, P75) human milk iodine concentration (HMIC) was 71 (45, 127) µg/L—of which, 66% had HMIC <100 µg/L. The median (P25, P75) urinary iodine concentration (UIC) was 80 µg/L (52, 141). The mean (± SD) 24-h iodine intake and habitual intake was 78 ± 79 µg/day and 75 ± 73 µg/day, respectively. In conclusion, this study confirms inadequate iodine intake and insufficient iodine status among lactating women in the inland area of Norway and medium knowledge awareness about iodine.


2007 ◽  
Vol 10 (12A) ◽  
pp. 1596-1599 ◽  
Author(s):  
Fereidoun Azizi

AbstractObjective: To describe studies evaluating urinary iodine excretion during pregnancy and lactation in women living in cities with adequate or more than adequate iodine intake.Design: Cross-sectional study conducted between 1996 and 1998 in pregnant women and a study of lactating women conducted in 2003.Settings and Subjects: Pregnant women attending prenatal clinics in four cities in the Islamic Republic of Iran. Urinary iodine excretion and thyroid volume was measured in 403 women. In a second study, 100 lactating women from Taleghani Hospital in Gorgan, Iran were evaluated for thyroid size, and both urinary and breast milk iodine concentrations were determined.Results: In Rasht city, 84% of pregnant women had a urinary iodine concentration of ≥ 200 μg l-1, while in the other cities this percentage ranged from 45 to 55%. When data were combined for the cities of Ilam, Isfahan and Tehran, where women have an adequate or more than adequate median urinary iodine concentration, 51% of pregnant women had a urinary iodine concentration less than that recommended during pregnancy. In Rasht, where the median urinary iodine concentration indicates an excessive iodine intake, 15.4% of pregnant women had a urinary iodine concentration < 200 μg l-1. The mean urinary iodine concentration in lactating women was 250 μg l-1, and 16% of women had a urinary iodine concentration < 100 μg l-1. Grade 1 goitre was present in 8% of lactating women, and another 8% had grade 2 goitre.Conclusions: Findings of this study call for further attention to iodine intake during pregnancy and lactation. The currently recommended intake of iodine through universal salt iodisation may not be adequate for pregnant and lactating women, and supplementation during pregnancy and lactation should be further considered in light of the latest recommendations.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 858
Author(s):  
Tedson Lukindo ◽  
Ray Masumo ◽  
Adam Hancy ◽  
Sauli E. John ◽  
Heavenlight A. Paulo ◽  
...  

Background: Deficient and excess iodine intake during pregnancy can lead to serious health problems. In Tanzania, information available on iodine status during pregnancy is minimal. The aim of this study was to assess the iodine status and its association with sociodemographic factors in pregnant women in the Mbeya region, Tanzania. Method: A cross sectional survey involving 420 pregnant women (n=420) aged between 15-49 years registered in antenatal care clinics was conducted. Data were collected via interviews and laboratory analysis of urinary iodine concentration (UIC). Results: Median UIC was 279.4μg/L (+/-26.1) to 1915μg/L. Insufficient iodine intake (UIC below 150μg/L) was observed in 17.14% of participants, sufficient intake in 24.29% and 58.57% had intakes above the recommended level (>250μg/L). Rungwe district council (DC) had the highest proportion of patients (27.9%) with low iodine levels, while Chunya and Mbarali DCs had the greatest proportion of those with UIC’s, over the WHO recommended level. Fish consumption and education status were associated with increased risk of insufficient iodine while individuals in Mbalali DC aged between 35-49 years were associated with increased risk of UIC above recommended level. Conclusion: Both deficient and excess iodine intake remains a public health problem, especially in pregnant women in Tanzania. Therefore, educational programs on iodine intake are needed to ensure this population has an appropriate iodine intake to prevent any health risks to the mother and the unborn child.


2020 ◽  
pp. 1-9
Author(s):  
M. Dineva ◽  
M. P. Rayman ◽  
S. C. Bath

Abstract Milk is the main source of iodine in the UK; however, the consumption and popularity of plant-based milk-alternative drinks are increasing. Consumers may be at risk of iodine deficiency as, unless fortified, milk alternatives have a low iodine concentration. We therefore aimed to compare the iodine intake and status of milk-alternative consumers with that of cows’ milk consumers. We used data from the UK National Diet and Nutrition Survey from years 7 to 9 (2014–2017; before a few manufacturers fortified their milk-alternative drinks with iodine). Data from 4-d food diaries were used to identify consumers of milk-alternative drinks and cows’ milk, along with the estimation of their iodine intake (µg/d) (available for n 3976 adults and children ≥1·5 years). Iodine status was based on urinary iodine concentration (UIC, µg/l) from spot-urine samples (available for n 2845 adults and children ≥4 years). Milk-alternative drinks were consumed by 4·6 % (n 185; n 88 consumed these drinks exclusively). Iodine intake was significantly lower in exclusive consumers of milk alternatives than cows’ milk consumers (94 v. 129 µg/d; P < 0·001). Exclusive consumers of milk alternatives also had a lower median UIC than cows’ milk consumers (79 v. 132 µg/l; P < 0·001) and were classified as iodine deficient by the WHO criterion (median UIC < 100 µg/l), whereas cows’ milk consumers were iodine sufficient. These data show that consumers of unfortified milk-alternative drinks are at risk of iodine deficiency. As a greater number of people consume milk-alternative drinks, it is important that these products are fortified appropriately to provide a similar iodine content to that of cows’ milk.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2399 ◽  
Author(s):  
Simona Censi ◽  
Jacopo Manso ◽  
Susi Barollo ◽  
Alberto Mondin ◽  
Loris Bertazza ◽  
...  

Background: Fifteen years after a nationwide voluntary iodine prophylaxis program was introduced, the aims of the present study were: (a) to obtain an up-to-date assessment of dietary iodine intake in the Veneto region, Italy; and (b) to assess dietary and socioeconomic factors that might influence iodine status. Methods: Urinary iodine concentration (UIC) was obtained in 747 school students (median age 13 years; range: 11–16 years). Results: The median UIC was 111 μg/L, with 56% of samples ≥ 100 μg/L, but 26% were < 50 μg/L, more frequently females. Iodized salt was used by 82% of the students. The median UIC was higher among users of iodized salt than among non-users, 117.0 ug/L versus 90 ug/L (p = 0.01). The median UIC was higher in regular consumers of cow’s milk than in occasional consumers, 132.0 μg/L versus 96.0 μg/L (p < 0.01). A regular intake of milk and/or the use of iodized salt sufficed to reach an adequate median UIC, although satisfying only with the combined use. A trend towards higher UIC values emerged in regular consumers of cheese and yogurt. Conclusion: Iodine status has improved (median UIC 111.0 μg/L), but it is still not adequate as 26% had a UIC < 50 μg/L in the resident population of the Veneto region. A more widespread use of iodized salt but also milk and milk product consumption may have been one of the key factors in achieving this partial improvement.


2020 ◽  
Vol 124 (9) ◽  
pp. 971-978
Author(s):  
Zhengyuan Wang ◽  
Wei Jin ◽  
Zhenni Zhu ◽  
Xueying Cui ◽  
Qi Song ◽  
...  

AbstractAs city residents eat out more frequently, it is unknown that if iodised salt is still required in home cooking. We analysed the relationship of household salt and eating out on urinary iodine concentration (UIC) in pregnant women. A household condiment weighing method was implemented to collect salt data for a week. A household salt sample was collected. A urine sample was taken at the end of the week. Totally, 4640 participants were investigated. The median UIC was 139·1 μg/l in pregnant women and 148·7, 140·0 and 122·9 μg/l in the first, second and third trimesters. Median UIC in the third trimester was lower than in the other trimesters (P < 0·001). The usage rates of iodised (an iodine content ≥ 5·0 mg/kg) and qualified-iodised (an iodine content ≥ 21·0 mg/kg) salt were 73·9 and 59·3 %. The median UIC in the qualified-iodised salt group was higher than in the non-iodised group (P = 0·037). The median UIC in the non-iodised group who did not eat out was lower than in qualified-salt groups who both did and did not eat out (P = 0·007, <0·001). The proportion of qualified-iodised salt used in home cooking is low, but foods eaten out have universal salt iodisation according to the national compulsory policy. Household iodised salt did not play a decisive role in the iodine status of pregnant women. Pregnant women in their third trimester who are not eating out and using non-iodised salt at home require extra iodine.


2016 ◽  
Vol 102 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Sara Stinca ◽  
Maria Andersson ◽  
Sandra Weibel ◽  
Isabelle Herter-Aeberli ◽  
Ralph Fingerhut ◽  
...  

Abstract Context: Thyroglobulin (Tg) could be a sensitive biomarker of iodine nutrition in pregnant women (PW). A dried blood spot (DBS) assay would simplify collection and transport in field studies. Objectives: Our aims were to (1) establish and test a reference range for DBS-Tg in PW; (2) determine whether co-measurement of Tg antibodies (Abs) is necessary to define population iodine status. Design, Setting, and Participants: Standardized cross-sectional studies of 3870 PW from 11 countries. For the DBS-Tg reference range, we included TgAb-negative PW (n = 599) from 3 countries with sufficient iodine intake. Main Outcome Measures: We measured the urinary iodine concentration and DBS thyroid-stimulating hormone, total thyroxin, Tg, and TgAb. Results: In the reference population, the median DBS-Tg was 9.2 μg/L (95% confidence interval, 8.7 to 9.8 μg/L) and was not significantly different among trimesters. The reference range was 0.3 to 43.5 μg/L. Over a range of iodine intake, the Tg concentrations were U-shaped. Within countries, the median DBS-Tg and the presence of elevated DBS-Tg did not differ significantly between all PW and PW who were TgAb-negative. Conclusions: A median DBS-Tg of ∼10 μg/L with &lt;3% of values ≥44 μg/L indicated population iodine sufficiency. Concurrent measurement of TgAb did not appear necessary to assess the population iodine status.


Sign in / Sign up

Export Citation Format

Share Document