scholarly journals Complex dynamics and control investigation of a Cournot triopoly game formed based on a log-concave demand function

2017 ◽  
Vol 9 (7) ◽  
pp. 168781401770281 ◽  
Author(s):  
K Alnowibet ◽  
SS Askar ◽  
AA Elsadany

This article investigates the dynamics of a Cournot triopoly game whose demand function is characterized by log-concavity. The game is formed using the bounded rationality approach. The existence and local stability of steady states of the game are analyzed. We find that an increase in the game parameters out of the stability region destabilizes the Cournot–Nash steady state. We confirm our obtained results using some numerical simulation. The simulation shows the consistence with the theoretical analysis and displays new and interesting dynamic behaviors, including bifurcation diagrams, phase portraits, maximal Lyapunov exponent, and sensitive dependence on initial conditions. Finally, a feedback control scheme is adopted to overcome the uncontrollable behavior of the game’s system occurred due to chaos.

2007 ◽  
Vol 2007 ◽  
pp. 1-14 ◽  
Author(s):  
Junhai Ma ◽  
Lingling Mu

We establish a nonlinear real estate model based on cobweb theory, where the demand function and supply function are quadratic. The stability conditions of the equilibrium are discussed. We demonstrate that as some parameters varied, the stability of Nash equilibrium is lost through period-doubling bifurcation. The chaotic features are justified numerically via computing maximal Lyapunov exponents and sensitive dependence on initial conditions. The delayed feedback control (DFC) method is applied to control the chaos of system.


2014 ◽  
Vol 472 ◽  
pp. 146-151
Author(s):  
Ya Li Lu

This paper studies the dynamics of a duopoly model with bounded rationality and nonlinear demand function. Based on the stability theorem and Jurys criterions, we prove that the model has two unstable boundary fixed points and a local stable Nash equilibrium. Then we depict the stability region of Nash equilibrium, and investigate the effects of output adjustment speed on the players profit respectively. Theoretical analysis and simulations show that higher output adjustment speed can result in chaotic variation of outputs, and that the Nash equilibrium is the optimal result of duopoly game. To improve the profitability of each player and achieve the optimal game result, we put forth a new scheme combined with the time-delayed feedback control and the limiter control to stabilize the output to Nash equilibrium. Finally, the numerical simulation is adopted to verify the effectiveness and feasibility of the above control scheme.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
LiuWei Zhao

A dynamic multimarket Cournot model is introduced based on a specific inverse demand function. Puu’s incomplete information approach, as a realistic method, is used to contract the corresponding dynamical model under this function. Therefore, some stability analysis is carried out on the model to detect the stability and instability conditions of the system’s Nash equilibrium. Based on the analysis, some dynamic phenomena such as bifurcation and chaos are found. Numerical simulations are used to provide experimental evidence for the complicated behaviors of the system evolution. It is observed that the equilibrium of the system can lose stability via flip bifurcation or Neimark-Sacker bifurcation and time-delayed feedback control is used to stabilize the chaotic behaviors of the system.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ali Saleh Alshomrani ◽  
Malik Zaka Ullah ◽  
Dumitru Baleanu

AbstractThis research aims to discuss and control the chaotic behaviour of an autonomous fractional biological oscillator. Indeed, the concept of fractional calculus is used to include memory in the modelling formulation. In addition, we take into account a new auxiliary parameter in order to keep away from dimensional mismatching. Further, we explore the chaotic attractors of the considered model through its corresponding phase-portraits. Additionally, the stability and equilibrium point of the system are studied and investigated. Next, we design a feedback control scheme for the purpose of chaos control and stabilization. Afterwards, we introduce an efficient active control method to achieve synchronization between two chaotic fractional biological oscillators. The efficiency of the proposed stabilizing and synchronizing controllers is verified via theoretical analysis as well as simulations and numerical experiments.


1992 ◽  
Vol 02 (01) ◽  
pp. 1-9 ◽  
Author(s):  
YOHANNES KETEMA

This paper is concerned with analyzing Melnikov’s method in terms of the flow generated by a vector field in contrast to the approach based on the Poincare map and giving a physical interpretation of the method. It is shown that the direct implication of a transverse crossing between the stable and unstable manifolds to a saddle point of the Poincare map is the existence of two distinct preserved homoclinic orbits of the continuous time system. The stability of these orbits and their role in the phenomenon of sensitive dependence on initial conditions is discussed and a physical example is given.


2020 ◽  
Author(s):  
Merlijn Olthof ◽  
Fred Hasselman ◽  
Anna Lichtwarck-Aschoff

Background: Psychopathology research is changing focus from group-based ‘disease models’ to a personalized approach inspired by complex systems theories. This approach, which has already produced novel and valuable insights into the complex nature of psychopathology, often relies on repeated self-ratings of individual patients. So far it has been unknown whether such self-ratings, the presumed observables of the individual patient as a complex system, actually display complex dynamics. We examine this basic assumption of a complex systems approach to psychopathology by testing repeated self-ratings for three markers of complexity: memory, the presence of (time-varying) short- and long-range temporal correlations, regime shifts, transitions between different dynamic regimes, and, sensitive dependence on initial conditions, also known as the ‘butterfly effect’, the divergence of initially similar trajectories.Methods: We analysed repeated self-ratings (1476 time points) from a single patient for the three markers of complexity using Bartels rank test, (partial) autocorrelation functions, time-varying autoregression, a non-stationarity test, change point analysis and the Sugihara-May algorithm.Results: Self-ratings concerning psychological states (e.g., the item ‘I feel down’) exhibited all complexity markers: time-varying short- and long-term memory, multiple regime shifts and sensitive dependence on initial conditions. Unexpectedly, self-ratings concerning physical sensations (e.g., the item ‘I am hungry’) exhibited less complex dynamics and their behaviour was more similar to random variables. Conclusions: Psychological self-ratings display complex dynamics. The presence of complexity in repeated self-ratings means that we have to acknowledge that (1) repeated self-ratings yield a complex pattern of data and not a set of (nearly) independent data points, (2) humans are ‘moving targets’ whose self-ratings display non-stationary change processes including regime shifts, and (3) long-term prediction of individual trajectories may be fundamentally impossible. These findings point to a limitation of popular statistical time series models whose assumptions are violated by the presence of these complexity markers. We conclude that a complex systems approach to mental health should appreciate complexity as a fundamental aspect of psychopathology research by adopting the models and methods of complexity science. Promising first steps in this direction, such as research on real-time process-monitoring, short-term prediction, and just-in-time interventions, are discussed.


2021 ◽  
Vol 31 (15) ◽  
Author(s):  
Penghe Ge ◽  
Hongjun Cao

The existence of chaos in the Rulkov neuron model is proved based on Marotto’s theorem. Firstly, the stability conditions of the model are briefly renewed through analyzing the eigenvalues of the model, which are very important preconditions for the existence of a snap-back repeller. Secondly, the Rulkov neuron model is decomposed to a one-dimensional fast subsystem and a one-dimensional slow subsystem by the fast–slow dynamics technique, in which the fast subsystem has sensitive dependence on the initial conditions and its snap-back repeller and chaos can be verified by numerical methods, such as waveforms, Lyapunov exponents, and bifurcation diagrams. Thirdly, for the two-dimensional Rulkov neuron model, it is proved that there exists a snap-back repeller under two iterations by illustrating the existence of an intersection of three surfaces, which pave a new way to identify the existence of a snap-back repeller.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Ayaz Siddiqui ◽  
Kartik Naik ◽  
Mitchell Cobb ◽  
Kenneth Granlund ◽  
Chris Vermillion

Abstract This paper presents a study wherein we experimentally characterize the dynamics and control system of a lab-scale ocean kite, and then refine, validate, and extrapolate this model for use in a full-scale system. Ocean kite systems, which harvest tidal and ocean current resources through high-efficiency cross-current motion, enable energy extraction with an order of magnitude less material (and cost) than stationary systems with the same rated power output. However, an ocean kite represents a nascent technology that is characterized by relatively complex dynamics and requires sophisticated control algorithms. In order to characterize the dynamics and control of ocean kite systems rapidly, at a relatively low cost, the authors have developed a lab-scale, closed-loop prototyping environment for characterizing tethered systems, whereby 3D printed systems are tethered and flown in a water channel environment. While this system has been shown to be capable of yielding similar dynamic characteristics to some full-scale systems, there are also fundamental limitations to the geometric scales and flow speeds within the water channel environment, making many other real-world scenarios impossible to replicate from the standpoint of dynamic similarity. To address these scenarios, we show how the lab-scale framework is used to refine and validate a scalable dynamic model of a tethered system, which can then be extrapolated to full-scale operation. In this work, we present an extensive case study of this model refinement, validation, and extrapolation on an ocean kite system intended for operation in the Gulf Stream or similar current environments.


Author(s):  
Sadeq Yaqubi ◽  
Morteza Dardel ◽  
Hamidreza Mohammadi Daniali

Dynamical behaviors and control of planar crank–slider mechanism considering the effects of joint clearance and link flexibility are studied. A control scheme for maintaining continuous contact is proposed. It was observed that using one actuator for control scheme might cause the actuator to reach its saturation limit, a problem that was bypassed by installing an additional actuator on connecting rod. In one actuator case, only continuous contact can be obtained, while with the aid of two actuators, point contact can be achieved. Great improvements in the performance of mechanism and reduction of vibrations are observed in the case of using an additional actuator.


Sign in / Sign up

Export Citation Format

Share Document