scholarly journals Study on stability and handling characteristics and control of four-wheel-drive electric vehicles

2017 ◽  
Vol 9 (12) ◽  
pp. 168781401773772 ◽  
Author(s):  
Feihua Huang ◽  
Chunyun Fu ◽  
Xiaolin Tang ◽  
Minghui Hu
Energies ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 1265-1287 ◽  
Author(s):  
Yi Sui ◽  
Ping Zheng ◽  
Fan Wu ◽  
Bin Yu ◽  
Pengfei Wang ◽  
...  

2012 ◽  
Vol 190-191 ◽  
pp. 729-732
Author(s):  
Hong Cheng ◽  
Hong Chao Fan ◽  
Hai Fei Lin ◽  
Cong Li ◽  
Yu Peng Mao ◽  
...  

It becomes the urgent and necessary to the development about wide range of manufacturing a multi-functional and human intelligence rescue robots because of difficulty of rescuing the wounded person in a disaster such as earthquakes and other disasters. A rescue robot prototype has been designed, assembled and commissioned based on the rescue mission and rescue needs of the students in Zhejiang Province mechanical design contest. The rescue robot is able to implement going through the tunnel and the bridge, removing the rescue objectives and other actions tasks. The rescue robot has a structure of four-wheel drive, variable center distance which can improve the ability of walking on the bridge and grabbing the rescue target by suction cups to complete the contest tasks. Experiment verified that the design of actuators and control system is reasonable. It took a total of 1 minute 18 seconds to complete the rescue work in Zhejiang Province mechanical design competition.


2013 ◽  
Vol 418 ◽  
pp. 20-24
Author(s):  
Yu Zhen Yang ◽  
Chang Sheng Ai ◽  
Kevin Lee

In order to complete the complex operation in the dangerous environment and improve the efficiency and accuracy of industrial production. WiFi based remote control system platform is composed by the controlled mobile robot and control terminal such as PC. They communicate with each other through wireless network. The mobile robot constructs of four wheel drive. Microcontroller, sensor, wireless routing module, serial server and network camera are in the robot. Control terminal includes PC, control handle and other equipments. Using a proven and reliable wireless bridge, each network device can realize network communication with others. Based on the TCP/IP protocol, using socket programming technology, data communication can be achieved. Video capture uses the network camera. Through the test of the platform, bilateral operation with real-time haptic and video feedback are achieved. At the same time according to the real-time environmental information feedback, control terminal realizes the effective remote monitoring in the controlled end.


Author(s):  
Pongpun Othaganont ◽  
Francis Assadian ◽  
Daniel J Auger

Electric vehicles are becoming more popular in the market. To be competitive, manufacturers need to produce vehicles with a low energy consumption, a good range and an acceptable driving performance. These are dependent on the choice of components and the topology in which they are used. In a conventional gasoline vehicle, the powertrain topology is constrained to a few well-understood layouts; these typically consist of a single engine driving one axle or both axles through a multi-ratio gearbox. With electric vehicles, there is more flexibility, and the design space is relatively unexplored. In this paper, we evaluate several different topologies as follows: a traditional topology using a single electric motor driving a single axle with a fixed gear ratio; a topology using separate motors for the front axle and the rear axle, each with its own fixed gear ratio; a topology using in-wheel motors on a single axle; a four-wheel-drive topology using in-wheel motors on both axes. Multi-objective optimisation techniques are used to find the optimal component sizing for a given requirement set and to investigate the trade-offs between the energy consumption, the powertrain cost and the acceleration performance. The paper concludes with a discussion of the relative merits of the different topologies and their applicability to real-world passenger cars.


Sign in / Sign up

Export Citation Format

Share Document