scholarly journals Failure analysis of the rubber track of a tracked transporter

2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878952 ◽  
Author(s):  
Weiwei Liu ◽  
Kai Cheng ◽  
Jun Wang

Rubber-tracked transporters are becoming increasingly popular in agriculture, forestry and military transportation. Rubber track systems are typically fitted instead of using tyres on the transporter to decrease soil stress and increase trafficability. Therefore, the accurate failure analysis of a rubber track is important. A model for predicting stress distribution along a rubber track is presented in this study. In the model, the stress along a rubber track consists of the vertical stress below the rubber track, tensile stress, bending stress and centrifugal tensile stress. Moreover, fourth strength theory was used to change a complicated stress state to a simple stress state. An experiment was performed at the test site of Harbin First Machinery Building Group Ltd, with a total weight of 61.789 kN. The experiment was conducted to verify and approve the theoretical model. The Miner rule was used to predict the cycle index and working hour of the rubber track, thereby providing a method for predicting the fatigue life of a rubber track.

2021 ◽  
Vol 883 ◽  
pp. 303-308
Author(s):  
Peter Hetz ◽  
Matthias Lenzen ◽  
Martin Kraus ◽  
Marion Merklein

Numerical process design leads to cost and time savings in sheet metal forming processes. Therefore, a modeling of the material behavior is required to map the flow properties of sheet metal. For the identification of current yield criteria, the yield strength and the hardening behavior as well as the Lankford coefficients are taken into account. By considering the anisotropy as a function of rolling direction and stress state, the prediction quality of anisotropic materials is improved by a more accurate modeling of the yield locus curve. According to the current state of the art, the layer compression test is used to determine the corresponding Lankford coefficient for the biaxial tensile stress state. However, the test setup and the test procedure is quite challenging compared to other tests for the material characterization. Due to this, the test is only of limited suitability if only the Lankford coefficient has to be determined. In this contribution, a simplified test is presented. It is a reduction of the layer compression test to one single sheet layer. So the Lankford coefficient for the biaxial tensile stress state can be analyzed with a significantly lower test effort. The results prove the applicability of the proposed test for an easy and time efficient characterization of the biaxial Lankford coefficient.


2012 ◽  
Vol 594-597 ◽  
pp. 604-607
Author(s):  
Hua Yuan ◽  
Yan Hong

Engineering dewatering has been widely used to improve soil characteristics currently, whereas dewatering always bring about soil settlement around the pumping well inevitably, which may be the largest defect of dewatering. In this paper, several possible factors leading to soil subsidence are explored, then the change of soil stress under the action of dewatering drainage during phreatic aquifer well pumping are investigated. From the two aspects that may be encountered during dewatering in confined aquifer: only pressure lowering effect as well as simultaneous function of both pressure relief and dewatering drainage, we study the change of soil stress state around foundation pit. The conclusions obtained through this research will contribute much to the calculation of soil settlement caused by dewatering, also beneficial to seek the settlement control measures.


1985 ◽  
Vol 107 (3) ◽  
pp. 412-417
Author(s):  
Tae Hyong Chong ◽  
Aizoh Kubo

A method to apply the approximation formulae [1] for tooth fillet and root stresses of a thin-rimmed spur gear to the calculation of stress state of an internal spur gear is introduced, for the case of an internal spur gear which is fixed by bolts and/or supported by pinned coupling similar to geared coupling. By this method, reliable stress state at tooth fillet and root areas in the whole internal gear can be easily calculated.


2010 ◽  
Vol 97-101 ◽  
pp. 500-503 ◽  
Author(s):  
Jian Wei Li ◽  
Min Qiang Xu ◽  
Jian Cheng Leng ◽  
Ming Xiu Xu

Magnetic behavior of ferromagnetic materials has been using to detect defects of materials. To evaluate the stress states of the components by the magnetic memory signal, Q235 defect asymmetrical samples were made. The characteristics of magnetic memory of Q235 have been studied in the three different testing environments which are online-loading, online-unloading and offline-unloading under cycle tensile stress. The results show that magnetic memory signals have different characteristics in different testing environment. It is feasible to evaluate preliminarily the stress state by the magnetic memory signals.


2013 ◽  
Vol 438-439 ◽  
pp. 1546-1550
Author(s):  
Jin Chao Yue ◽  
Xiao Bin Zhang ◽  
Ling Min Ye

The vibrant-type-disintegration method is applied to calculate structure seismic action of a weir dam. Based on calculation and analysis of the weir dam, special attention is paid to the stress state of key parts. The results show that the displacement and stress of weir dam are affected by earthquake excitation direction. Since large principal tensile stress appears in the joint of girder and pier, and the zone of principal tensile stress is large because of the thrust of radial gate and steep changes of geometry shape, we should pay special attention when calculating anti-seismic checking and reinforcement arrangement.


Sign in / Sign up

Export Citation Format

Share Document