scholarly journals Bionic design and test of polycrystalline diamond compact bit for hard rock drilling in coal mine

2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092318
Author(s):  
Chuanliu Wang

For hard rock drilling in coal mine, the drilling efficiency and service life of polycrystalline diamond compact bit are very low. To overcome these shortcomings, the bionic technology is applied to the design and processing of polycrystalline diamond compact bit. The bit body and polycrystalline diamond compact cutter are designed as bionic structures, and the test of the bionic polycrystalline diamond compact bit is carried out. Test results show that, when drilling in fine sandstone with hardness greater than 9, the performance of the bionic polycrystalline diamond compact bit is significantly improved. Comparing with the Φ113-mm concave polycrystalline diamond compact bit, the service life and drilling efficiency of the A-type bionic polycrystalline diamond compact bit increase by 54% and 230%, respectively, the service life and drilling efficiency of the B-type bionic polycrystalline diamond compact bit increase by 345% and 204%, respectively, which show that the bionic design of polycrystalline diamond compact bit can provide a new research idea for hard rock drilling in coal mine. Also the test results indicate that, when processing the bionic polycrystalline diamond compact cutter, the linear cutting process will cause thermal damage to the diamond layer of polycrystalline diamond compact cutter, while the cold grinding process shows higher comprehensive performance, therefore the one-time synthesis of bionic polycrystalline diamond compact cutter is the future research direction.

2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881024
Author(s):  
Qiongqiong Tang ◽  
Wei Guo ◽  
Ke Gao ◽  
Rongfeng Gao ◽  
Yan Zhao ◽  
...  

Cats protract claws while hunting or pawing on the ground and retract to muscles when relaxing. Inspired by this behavior, and in order to solve the problem of short service life and low comprehensive drilling efficiency of polycrystalline diamond compact bits which results from its poor adaptability to soft-hard interbedded strata, a self-adaptive bionic polycrystalline diamond compact bit was designed, which can use the elastic element to adjust its back-rake angle according to the formation hardness to improve the adaptability of polycrystalline diamond compact bits. Theoretical analysis and drilling test results show that the self-adaptive bionic polycrystalline diamond compact bit has a strong adaptability to soft-hard interbedded rock strata. When drilling in soft rock, the back-rake angle is small and the rate of penetration is high; when drilling in hard rock, the angle becomes larger to reduce the abnormal damage of cutters. Thus, it can improve the integrated drilling efficiency and service life of polycrystalline diamond compact bits. In the whole drilling test, the average penetration rate of the self-adaptive bionic polycrystalline diamond compact bit increases by 10%–13% over conventional polycrystalline diamond compact bits with the same dimension and material.


Author(s):  
M. A. Elsayed ◽  
David W. Raymond

In this paper, we discuss results of rock drilling tests at Sandia National Laboratories’ Hard Rock Drilling Facility (HRDF). The HRDF incorporates a drillstring with axial and torsional compliance and is equipped with a coring bit having PDC (Polycrystalline Diamond Compact) cutters. We measure and analyze chatter and show evidence of stick-slip as well as coupling between axial and torsional vibrations. We show the coupling signature in axial vibration data in the form of side bands indicating frequency modulation at the torsional natural frequency. The influence of operating conditions on the bit response is shown.


1985 ◽  
Vol 107 (4) ◽  
pp. 534-542 ◽  
Author(s):  
C. L. Hough ◽  
B. Das

The wear characteristics of polycrystalline diamond compact (PDC) drill bits were investigated in the context of drilling small holes in a hard abrasive medium. An efficient method for measuring wear of the PDC drill bits was developed. The wear test results were grouped or categorized in terms of rotary speed, feed and wear or failure characteristics. Contrary to the three classical wear phases (break-in, uniform wear and rapid breakdown) of the single material cutters, four distinctive wear phases were formed for the PDC cutters: I–break-in, II–diamond wear, III–carbide wear, and IV–rapid breakdown. The characteristics of the wear phases were identified and some suggestions were made to alleviate the wear problem.


Author(s):  
M. A. Elsayed

Drillstrings equipped with PDC bits are commonly used to drill for oil, gas and geothermal energy. Drillstring instability — defined as the tendency of self-excited vibrations (chatter) to grow with time — causes failure of PDC bits as well as pipe joints. This problem becomes particularly severe in deep wells and hard rock. Much work has been performed in predicting stability. Bit and drillstring geometry as well as rock type affect stability. In this paper, we propose a scheme to assure stability for a given drillstring regardless of bit geometry, utilizing the desired drilling parameters. The effect of bit geometry and rock type in the classic stability analysis are replaced by the drilling parameters, namely: weight-ob-bit (WOB), rate of penetration (ROP) and speed (RPM). Experimental data obtained at Sandia National Labs, Albuquerque, N.M. is used to verify the assured stability equation. This approach is much simpler that classic stability analysis.


2021 ◽  
Vol 8 ◽  
pp. 41-49
Author(s):  
Dongdong Song ◽  
Yingxin Yang ◽  
Haitao Ren

PDC (Polycrystalline Diamond Compact bit) composite is the most important cutting element of petroleum bit, which performance directly affects the service effect and service life of the bit. During the drilling process, the cutter will produce a large amount of friction heat when cutting the rock, resulting in a sharp increase in the internal temperature of the cutter. When the temperature reaches a certain value, thermal wear and tear are very easy to occur, which will not only cause diamond delamination but also reduce the wear resistance of the cutter. Under the action of impact load, impact failure is more likely to occur, which greatly reduces the service life of the cutter and the rock-breaking efficiency of the drill bit. Therefore, this paper studies the composite interface suitable for high-temperature drilling through the changes of cutting tooth temperature field and stress field with different interface shapes, which shows that the non-planar interface is more suitable for improving the cutting tooth life of composite under the action of comprehensive stress field.


2014 ◽  
Vol 1017 ◽  
pp. 323-328 ◽  
Author(s):  
W. Shao ◽  
Xing Sheng Li ◽  
Yong Sun ◽  
Han Huang

Application of polycrystalline diamond compact (PDC) based cutting tools for hard rock excavation in mining and construction industries has increased significantly in recent years due to their super hardness, superb thermal conductivity and long life durability. Super Material Abrasive Resistant Tool (SMART*CUT) technology has been developed by CSIRO (Commonwealth Scientific and Industrial Research Organisation) in the last 15 years, which includes the replacement of tungsten carbide (WC) tips of the conventional picks with thermally stable diamond composite (TSDC) tips, attachment of the TSDC tips to steel tool bodies with CSIRO’s worldwide patented bonding technology. The wear characteristics of TSDC cutting elements have been investigated previously. In this paper, the preliminary results of cutter forces and resultant angle of SMART*CUT picks were compared with that of traditional WC picks. A tri-axial force dynamometer and a data acquisition system were used to measure the cutter forces. Besides, the cutting area temperature during cutting process was continuously measured by a FLIR SC7600M thermal infrared camera and the recorded data were processed by Altair Software.


1992 ◽  
Vol 114 (4) ◽  
pp. 323-331 ◽  
Author(s):  
H. Karasawa ◽  
S. Misawa

Rock cutting, drilling and durability tests were conducted in order to obtain data to design polycrystalline diamond compact (PDC) bits for geothermal well drilling. Both conventional and new PDC bits with different rake angles were tested. The rock cutting tests revealed that cutting forces were minimized at −10 deg rake angle independent of rock type. In drilling and durability tests, a bit with backrake and siderake angles of −10 or −15 deg showed better performance concerning the penetration rate and the cutter strength. The new PDC bit exhibited better performance as compared to the conventional one, especially in hard rock drilling. Furthermore, a new PDC core bit (98.4 mm o. d., 66 mm i. d.) with eight cutters could be successfully applied to granite drilling equally as well as a bit with twelve cutters.


1992 ◽  
Vol 114 (4) ◽  
pp. 332-338
Author(s):  
S. Misawa ◽  
H. Karasawa

In order to develop polycrystalline diamond compact (PDC) bits of about 8-1/2 in. in diameter which are able to drill geothermal wells, we have conducted the investigation with respect to the structure of a PDC cutter and rake angles, etc., by means of fundamental laboratory and field tests. New PDC core bits of 8-15/32 in. diameter were designed and manufactured based on the results of these tests. Then, field tests using them were carried out in geothermal wells at Hijiori in Yamagata prefecture, Hot Dry Rock project site in Japan, on September 1989 and October 1990. It became clear that the new PDC core bit can be sufficiently applied to the drilling of heterogeneous hot-hard rock formations from the tests.


Author(s):  
Xiaoming HAN ◽  
Chenxu LUO ◽  
Xingyu HAN

<span lang="EN-US">In order to solve the bit front rake angle parameter selection problem of under different coal rock, it is proposed in polycrystalline diamond compact no core bit as the research object, and established a bit compact two-dimensional stress model of cutting teeth. The result shows that the front rake angle is the factor of cutting force and the drilling efficiency. Application of SolidWorks simulation carries out the finite element simulation analysis respectively to different front rake angle of bit model under the condition of soft rock and hard rock. Form the simulation it concludes that under the condition of soft rock and hard rock, the optimal front rake angle is 10° and 15° respectively. It is obtained that the strength of the bit is largest and the life is longest on the best front rake angle of bit.</span>


Sign in / Sign up

Export Citation Format

Share Document