scholarly journals Dynamical wear prediction along meshing path in mixed lubrication of spiral bevel gears

2020 ◽  
Vol 12 (9) ◽  
pp. 168781402095823
Author(s):  
Xin Pei ◽  
Lu Huang ◽  
Wei Pu ◽  
Pengchong Wei

Surfaces of gears under combined rolling and sliding motions may suffer a complicated wear process due to the transient time-varying effect along the meshing path. In this paper, a methodology for predicting the wear of tooth surfaces is developed for the spiral bevel gears. In the wear model, the machined surface roughness, mixed lubrication, friction, flash temperature and the dynamic behavior of gears are all considered. Tooth-Contact-Analysis (TCA) method is used to get the time-varying parameters of meshing points along the meshing path. By simulating real movement process, the material is removed according to the Arrhenius equation. First, the distribution of pressure and film thickness is obtained by solving the mixed EHL model. After that, the flash temperature can be computed by the point heat source integration method with the obtained pressure, film thickness and velocity vector. The material removal is based on surface temperature and sliding distance. The numerical results are compared to the ball-on-disk experiments to demonstrate the reasonableness of the present wear model. And it shows that the angle difference between velocity vectors has strong influences on the wear profile. Furthermore, the mechanism of surface wear evolution is investigated systematically in spiral bevel gears. The difference of the wear track between the pinion and gear surfaces is observed. Besides, in the meshing process of tooth surface, the wear along the meshing path is uneven, which appears to be much greater at the engaging-in and engaging-out areas. There is a position with maximum wear rate in the meshing process, and the position is affected by the load and speed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanzhong Wang ◽  
Kai Yang ◽  
Xiaomeng Chu ◽  
Wen Tang ◽  
Changyong Huang

AbstractAn engineering calculation model is introduced for point-contact elastohydrodynamic lubrication analysis of spiral bevel gears. This model can analyze transient lubrication characteristics of spiral bevel gears. The influence of the angle between the lubricant entrainment and the minor axis of the contact ellipse is included in this model. The contact parameters of the spiral bevel gear are calculated, which will change with time during the meshing process. The variation of lubricant film thickness during the meshing process of spiral bevel gears is unraveled. Due to the influence of entrainment velocity, the oil film thickness at the out mesh side is smaller than that at the enter mesh side under the same contact force. It is evident that the higher the pressure is, the larger the contact area will be. Meanwhile, the thickness of the oil film is reduced, and the oil film distribution in the contact area is relatively uniform. Taking helicopter main transmission spiral bevel gears as an example, this study finally calculates the distribution characteristics of the oil film thickness of the spiral bevel gear, and solves the lubrication performance of the spiral bevel gear under different working conditions.


Friction ◽  
2021 ◽  
Author(s):  
Zongzheng Wang ◽  
Wei Pu ◽  
Xin Pei ◽  
Wei Cao

AbstractExisting studies primarily focus on stiffness and damping under full-film lubrication or dry contact conditions. However, most lubricated transmission components operate in the mixed lubrication region, indicating that both the asperity contact and film lubrication exist on the rubbing surfaces. Herein, a novel method is proposed to evaluate the time-varying contact stiffness and damping of spiral bevel gears under transient mixed lubrication conditions. This method is sufficiently robust for addressing any mixed lubrication state regardless of the severity of the asperity contact. Based on this method, the transient mixed contact stiffness and damping of spiral bevel gears are investigated systematically. The results show a significant difference between the transient mixed contact stiffness and damping and the results from Hertz (dry) contact. In addition, the roughness significantly changes the contact stiffness and damping, indicating the importance of film lubrication and asperity contact. The transient mixed contact stiffness and damping change significantly along the meshing path from an engaging-in to an engaging-out point, and both of them are affected by the applied torque and rotational speed. In addition, the middle contact path is recommended because of its comprehensive high stiffness and damping, which maintained the stability of spiral bevel gear transmission.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401879065 ◽  
Author(s):  
Shuai Mo ◽  
Shengping Zhu ◽  
Guoguang Jin ◽  
Jiabei Gong ◽  
Zhanyong Feng ◽  
...  

High-speed heavy-load spiral bevel gears put forward high requirement for flexural strength; shot peening is a technique that greatly improves the bending fatigue strength of gears. During shot peening, a large number of fine pellets bombard the surface of the metal target material at very high speeds and let the target material undergo plastic deformation, at the same time strengthening layer is produced. Spiral bevel gear as the object of being bombarded inevitably brought the tooth surface micro-morphology changes. In this article, we aim to reveal the effect of microtopography of tooth shot peening on gear lubrication in spiral bevel gear, try to establish a reasonable description of the microscopic morphology for tooth surface by shot peening, to reveal the lubrication characteristics of spiral bevel gears after shot peening treatment based on the lubrication theory, and do comparative research on the surface lubrication characteristics of a variety of microstructures.


Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Abstract Kinematical optimization and sensitivity analysis of circular-cut spiral bevel gears are investigated in this paper. Based on the Gleason spiral bevel gear generator and EPG test machine, a mathematical model is proposed to simulate the tooth contact conditions of the spiral bevel gear set. All the machine settings and assembly data are simulated by simplified parameters. The tooth contact patterns and kinematic errors are obtained by the proposed mathematical model and the tooth contact analysis techniques. Loaded tooth contact patterns are obtained by the differential geometry and the Hertz contact formulas. Tooth surface sensitivity due to the variation of machine settings is studied. The corrective machine settings can be calculated by the sensitive matrix and the linear regression method. An optimization algorithm is also developed to minimize the kinematic errors and the discontinuity of tooth meshing. According to the proposed studies, an improved procedure for development of spiral bevel gears is suggested. The results of this paper can be applied to determine the sensitivity and precision requirements in manufacturing, and improve the running quality of the spiral bevel gears. Two examples are presented to demonstrate the applications of the optimization model.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Ligang Yao ◽  
Bing Gu ◽  
Shujuan Haung ◽  
Guowu Wei ◽  
Jian S. Dai

The purpose of this paper is to propose a pair of external and internal spiral bevel gears with double circular-arc in the nutation drive. Based on the movement of nutation, this paper develops equations of the tooth profiles for the gear set, leading to the mathematical modeling of the spiral bevel gear with a constant helical angle gear alignment curve, enabling the tooth surface to be generated, and permitting the theoretical contacting lines to be produced in light of the meshing function. Simulation and verification are carried out to prove the mathematical equations. Numerical control (NC) simulation of machining the external and internal double circular-arc spiral bevel gears is developed, and the spiral gears were manufactured on a NC milling machine. The prototype of the nutation drive is illustrated in the case study at the end of this paper.


Author(s):  
Rulong Tan ◽  
Bingkui Chen ◽  
Dong Liang ◽  
Changyan Peng

This paper investigates the geometrical design principal of the spiral bevel gears with two contact paths from spatial conjugate curve theory. Differential geometry and gearing kinematics are introduced to derive this model. In this process, the calculation method of contact paths and tooth surface generating method are presented. According to the arguments in this paper, a process of designing the tooth surface of logarithmic spiral bevel gears with two contact paths is investigated. Then, through this process, the design of a pair of logarithmic spiral bevel gears with two contact paths is completed. Besides, the prototype is manufactured and the performance experiment is completed. Results show the maximum contact stress of spiral bevel gears with two contact paths is reduced compared to those with one contact path. Besides, the transmission efficiency of the spiral bevel gears with two contact paths can reach 98.2%.


1992 ◽  
Vol 114 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Undercutting is a serious problem in designing spiral bevel gears with small numbers of teeth. Conditions of undercutting for spiral bevel gears vary with the manufacturing methods. Based on the theory of gearing [1], the tooth geometry of the Gleason type circular-cut spiral bevel gear is mathematically modeled. The sufficient and necessary conditions for the existence and regularity of the generated gear tooth surfaces are investigated. The conditions of undercutting for a circular-cut spiral bevel gear are defined by the sufficient conditions of the regular gear tooth surface. The derived undercutting equations can be applicable for checking the undercutting conditions of spiral bevel gears manufactured by the Gleason Duplex Method, Helical Duplex Method, Fixed Setting Method, and Modified Roll Method. An example is included to illustrate the application of the proposed undercut checking equations.


Sign in / Sign up

Export Citation Format

Share Document