scholarly journals A hybrid robust adaptive control for a quadrotor UAV via mass observer and robust controller

2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110027
Author(s):  
Laihong Zhou ◽  
Shunjian Xu ◽  
Hong Jin ◽  
Huihua Jian

The flight stability and safety of the quadrotor unmanned aerial vehicle (UAV) with variable mass are the key problems that limit its application. In order to improve the stability and steady-state control precision of the quadrotor system against slow-varying mass and external disturbance, a new robust adaptive flight control algorithm is developed and analyzed in detail in this paper. Firstly, a mass observer based on adaptive control theory is designed to estimate the real-time mass and correct the mass parameter of the UAV. Then, a hyperbolic tangent function and a proportional integral (PI) controller is added into the attitude controller to eliminate the effect of the external disturbances. Finally, a hybrid robust adaptive controller (HRAC) developed with backstepping control method is used here for the trajectory tracking of quadrotor. The boundedness of the nonlinear system is verified by Lyapunov stability theory and uniformly ultimately bounded theorem. The trajectory tracking simulation experiments are presented in MATLAB/SIMULINK simulation environment. According to the simulation results, the real-time mass of quadrotor can be estimated by HRAC satisfactorily under the condition of external disturbances, while the estimate error of mass is only 6.4% of its own. In addition, HRAC can provide a higher trajectory tracking accuracy compared with robust optimal backstepping control (ROBC) and robust generalized dynamic inversion (RGDI). The results suggest a promising route based on the mass observer and hybrid robust controller toward slow-varying mass and the external disturbance as effective robustness control strategy for quadrotor UAV.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nigar Ahmed ◽  
Abid Raza ◽  
Rameez Khan

Purpose The aim of this paper is to design a nonlinear disturbance observer-based control (DOBC) method obtained by patching a control method developed using a robust adaptive technique and a DO. Design/methodology/approach For designing a DOBC, initially a class of nonlinear system is considered with an external disturbance. First, a DO is designed to estimate the external disturbances. This estimate is combined with the controller to reject the disturbances and obtain the desired control objective. For designing a controller, the robust sliding mode control theory is used. Furthermore, instead of using a constant switching gain, an adaptive gain tuning criterion is designed using Lyapunov candidate function. To investigate the stability and effectiveness of the developed DOBC, stability analysis and simulation study are presented. Findings The major findings of this paper include the criteria of designing the robust adaptive control parameters and investigating the disturbance rejection when robust adaptive control based DOBC is developed. Practical implications In practice, the flight of quadrotor is affected by different kind of external disturbances, thus leading to the change in dynamics. Hence, it is necessary to design DOBCs based on robust adaptive controllers such that the quadrotor model adapts to the change in dynamics, as well as nullify the effect of disturbances. Originality/value Designing DOBCs based on robust control method is a common practice; however, the robust adaptive control method is rarely developed. This paper contributes in the domain of DOBC based on robust adaptive control methods such that the behavior of controller varies with the change in dynamics occurring due to external disturbances.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Weiwei Sun ◽  
Guochen Pang ◽  
Pan Wang ◽  
Lianghong Peng

This paper deals with the robust stabilizability andL2disturbance attenuation for a class of time-delay Hamiltonian control systems with uncertainties and external disturbances. Firstly, the robust stability of the given systems is studied, and delay-dependent criteria are established based on the dissipative structural properties of the Hamiltonian systems and the Lyapunov-Krasovskii (L-K) functional approach. Secondly, the problem ofL2disturbance attenuation is considered for the Hamiltonian systems subject to external disturbances. An adaptive control law is designed corresponding to the time-varying delay pattern involved in the systems. It is shown that the closed-loop systems under the feedback control law can guarantee theγ-dissipative inequalities be satisfied. Finally, two numerical examples are provided to illustrate the theoretical developments.


2020 ◽  
Vol 14 (4) ◽  
pp. 413-430
Author(s):  
Abdelsatar Elmezayen ◽  
Ahmed El-Rabbany

AbstractTypically, the extended Kalman filter (EKF) is used for tightly-coupled (TC) integration of multi-constellation GNSS PPP and micro-electro-mechanical system (MEMS) inertial navigation system (INS) to provide precise positioning, velocity, and attitude solutions for ground vehicles. However, the obtained solution will generally be affected by both of the GNSS measurement outliers and the inaccurate modeling of the system dynamic. In this paper, an improved robust adaptive Kalman filter (IRKF) is adopted and used to overcome the effect of the measurement outliers and dynamic model errors on the obtained integrated solution. A real-time IRKF-based TC GPS+Galileo PPP/MEMS-based INS integration algorithm is developed to provide precise positioning and attitude solutions. The pre-saved real-time orbit and clock products from the Centre National d’Etudes Spatials (CNES) are used to simulate the real-time scenario. The performance of the real-time IRKF-based TC GNSS PPP/INS integrated system is assessed under open sky environment, and both of simulated partial and complete GNSS outages through two ground vehicular field trials. It is shown that the real-time TC GNSS PPP/INS integration through the IRKF achieves centimeter-level positioning accuracy under open sky environments and decimeter-level positioning accuracy under GNSS outages that range from 10 to 60 seconds. In addition, the use of IRKF improves the positioning accuracy and enhances the convergence of the integrated solution in comparison with the EKF. Furthermore, the IRKF-based integrated system achieves attitude accuracy of 0.052°, 0.048°, and 0.165° for pitch, roll, and azimuth angles, respectively. This represents improvement of 44 %, 48 %, and 36 % for the pitch, roll, and azimuth angles, respectively, in comparison with the EKF-based counterpart.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Gaosheng Luo ◽  
Jiawang Chen ◽  
Linyi Gu

A robust adaptive control method with full-state feedback is proposed based on the fact that the elbow joint of a seven-function hydraulic manipulator with double-screw-pair transmission features the following control characteristics: a strongly nonlinear hydraulic system, parameter uncertainties susceptible to temperature and pressure changes of the external environment, and unknown outer disturbances. Combined with the design method of the back-stepping controller, the asymptotic stability of the control system in the presence of disturbances from uncertain systematic parameters and unknown external disturbances was demonstrated using Lyapunov stability theory. Based on the elbow joint of the seven-function master-slave hydraulic manipulator for the 4500 m Deep-Sea Working System as the research subject, a comparative study was conducted using the control method presented in this paper for unknown external disturbances. Simulations and experiments of different unknown outer disturbances showed that (1) the proposed controller could robustly track the desired reference trajectory with satisfactory dynamic performance and steady accuracy and that (2) the modified parameter adaptive laws could also guarantee that the estimated parameters are bounded.


Sign in / Sign up

Export Citation Format

Share Document