scholarly journals Comparison of Li2CO3-Na2CO3-K2CO3, KCl-MgCl2 and NaNO3-KNO3 as heat transfer fluid for different sCO2 and steam power cycles in CSP tower plant under different DNI conditions

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110119
Author(s):  
Kamran Mahboob ◽  
Awais A Khan ◽  
Muhammad Adeel Khan ◽  
Jawad Sarwar ◽  
Tauseef A Khan

This work presents the characteristics of a solar thermal tower power plant in two different places (Seville and Dubai) using three different HTFs (NaNO3-KNO3, KCl-MgCl2 and Li2CO3-Na2CO3-K2CO3) and three different power cycles (Rankine, sCO2 Recompression and sCO2 Partial cooling cycles). An indirect configuration is considered for the Gemasolar power plant. Detailed modelling is carried out for the conversion of incident power on the heliostat to the output electricity. Optimization of the cycle is carried out to determine the most promising cycle configuration for efficiency. The results showed that for the Gemasolar power plant configuration, the performance of the KCl-MgCl2 based plant was poorest amongst all. NaNO3-KNO3 based plant has shown good performance with the Rankine cycle but plant having Li2CO3-Na2CO3-K2CO3 as HTF was best for all three cycles. Partial cooling was the best performing cycle at both locations with all three HTFs. Placing the Seville Plant in Dubai has improved the efficiency from 23.56% to 24.33%, a capacity factor improvement of 21 and 52 GW additional power is generated. The optimization of the plant in Dubai has shown further improvements. The efficiency is improved, the Capacity factor is increased by 31.2 and 77.8 GW of additional electricity is produced.

Energies ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 37 ◽  
Author(s):  
Jose Rogada ◽  
Lourdes Barcia ◽  
Juan Martinez ◽  
Mario Menendez ◽  
Francisco de Cos Juez

Power plants producing energy through solar fields use a heat transfer fluid that lends itself to be influenced and changed by different variables. In solar power plants, a heat transfer fluid (HTF) is used to transfer the thermal energy of solar radiation through parabolic collectors to a water vapor Rankine cycle. In this way, a turbine is driven that produces electricity when coupled to an electric generator. These plants have a heat transfer system that converts the solar radiation into heat through a HTF, and transfers that thermal energy to the water vapor heat exchangers. The best possible performance in the Rankine cycle, and therefore in the thermal plant, is obtained when the HTF reaches its maximum temperature when leaving the solar field (SF). In addition, it is necessary that the HTF does not exceed its own maximum operating temperature, above which it degrades. The optimum temperature of the HTF is difficult to obtain, since the working conditions of the plant can change abruptly from moment to moment. Guaranteeing that this HTF operates at its optimal temperature to produce electricity through a Rankine cycle is a priority. The oil flowing through the solar field has the disadvantage of having a thermal limit. Therefore, this research focuses on trying to make sure that this fluid comes out of the solar field with the highest possible temperature. Modeling using data mining is revealed as an important tool for forecasting the performance of this kind of power plant. The purpose of this document is to provide a model that can be used to optimize the temperature control of the fluid without interfering with the normal operation of the plant. The results obtained with this model should be necessarily contrasted with those obtained in a real plant. Initially, we compare the PID (proportional–integral–derivative) models used in previous studies for the optimization of this type of plant with modeling using the multivariate adaptive regression splines (MARS) model.


2015 ◽  
Vol 77 (28) ◽  
Author(s):  
Marwan Affandi ◽  
Ilmi Abdullah ◽  
Nurul Syahirah Khalid

Rankine cycle is one example of vapor power cycles. One important application is in steam power plants. Properties of the important points in the cycle can be found from steam tables. However, reading values from a steam table is rather inconvenient particularly when there are many values to be read such in a simulation. Interpolation must often be done since the table only provides values of properties at determined points. Using equations of states for steam is very convenient since values can be computed quickly. Unfortunately, equations of states for steam are very complicated. A program written in MATLAB to assist the teaching of Rankine cycle using steam has been developed. MATLAB is used since it is widely available. Using this program, a lecturer can easily modify a problem and get the answer quickly. Students can also benefit from the program where they can solve problems and compare the results that they will get manually.  


Author(s):  
Mamdouh El Haj Assad ◽  
Mohammad Hossein Ahmadi ◽  
Milad Sadeghzadeh ◽  
Ameera Yassin ◽  
Alibek Issakhov

Abstract New and innovative solutions are being developed to overcome the challenges of detrimental effects that the traditional energy systems cause. This means that sustainable methods are implemented to do so, noting that when such developments are taken into consideration and are studied, this leads to a significant drop in the cost of renewable energy systems. In this work, a hybrid system consisting of a single flash steam geothermal power plant and a solar thermal system using a parabolic trough collector (PTC) is studied. Based on the available works in literature, the required design materials and modeling equations are chosen and discussed. The heat transfer fluid (HTF) as water is chosen as the working fluid for the PTC due to its low cost and high specific heat capacity. The calculations are carried out for the PTC on a specific day, time and location, and the simulations for the geothermal power plant (GPP) are carried out using System Advisor Model (SAM) software, assuming a specific increase in the temperature of the geofluid due to the additional heat transfer from the HTF of the PTC. The power plant output is 20 MW powered by four production wells. The results show that the energy production is ~15 GWh in January, which is the highest during the year due to the required energy demand for electricity consumption and district heating. Moreover, a mini review of the mathematical modeling of PTC and single flash geothermal power plant is presented.


2021 ◽  
Vol 11 (9) ◽  
pp. 4100
Author(s):  
Rasa Supankanok ◽  
Sukanpirom Sriwong ◽  
Phisan Ponpo ◽  
Wei Wu ◽  
Walairat Chandra-ambhorn ◽  
...  

Evacuated-tube solar collector (ETSC) is developed to achieve high heating medium temperature. Heat transfer fluid contained inside a copper heat pipe directly affects the heating medium temperature. A 10 mol% of ethylene-glycol in water is the heat transfer fluid in this system. The purpose of this study is to modify inner structure of the evacuated tube for promoting heat transfer through aluminum fin to the copper heat pipe by inserting stainless-steel scrubbers in the evacuated tube to increase heat conduction surface area. The experiment is set up to measure the temperature of heat transfer fluid at a heat pipe tip which is a heat exchange area between heat transfer fluid and heating medium. The vapor/ liquid equilibrium (VLE) theory is applied to investigate phase change behavior of the heat transfer fluid. Mathematical model validated with 6 experimental results is set up to investigate the performance of ETSC system and evaluate the feasibility of applying the modified ETSC in small-scale industries. The results indicate that the average temperature of heat transfer fluid in a modified tube increased to 160.32 °C which is higher than a standard tube by approximately 22 °C leading to the increase in its efficiency by 34.96%.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
J. Ignacio Ortega ◽  
J. Ignacio Burgaleta ◽  
Félix M. Téllez

Of all the technologies being developed for solar thermal power generation, central receiver systems (CRSs) are able to work at the highest temperatures and to achieve higher efficiencies in electricity production. The combination of this concept and the choice of molten salts as the heat transfer fluid, in both the receiver and heat storage, enables solar collection to be decoupled from electricity generation better than water∕steam systems, yielding high capacity factors with solar-only or low hybridization ratios. These advantages, along with the benefits of Spanish legislation on solar energy, moved SENER to promote the 17MWe Solar TRES plant. It will be the first commercial CRS plant with molten-salt storage and will help consolidate this technology for future higher-capacity plants. This paper describes the basic concept developed in this demonstration project, reviewing the experience accumulated in the previous Solar TWO project, and present design innovations, as a consequence of the development work performed by SENER and CIEMAT and of the technical conditions imposed by Spanish legislation on solar thermal power generation.


Sign in / Sign up

Export Citation Format

Share Document