scholarly journals A hybrid fault-tolerant control strategy for four-wheel independent drive vehicles

2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110454
Author(s):  
Ruinan Chen ◽  
Jian Ou

In this paper, a hybrid fault-tolerant control strategy is putted forward to improve the stability of the four-wheel independent drive (4WID) electric vehicle with motor failures. To improve the handling performance of the vehicle with in-wheel motor failures, the faults of in-wheel motors are analyzed and modeled. Then, a model reference adaptive fault observer was designed to observe the faults in real-time. Based on the observation results, there are designed a model predictive control (MPC) based high-performance active fault-tolerant control (AFTC) strategy and a sliding mode control based high-robust passive fault-tolerant control (PFTC) strategy. However, the fault observation results may not always be accurately. For this circumstance, a hybrid fault-tolerant control strategy was designed to make the control method find a balance between optimality and robustness. Finally, a series of simulations are conducted on a hardware-in-loop (HIL) real-time simulator, the simulation results show that the control strategy designed in this paper is effectiveness.

Author(s):  
Amirhossein Kazemipour ◽  
Alireza B Novinzadeh

In this paper, a control system is designed for a vehicle active suspension system. In particular, a novel terminal sliding-mode-based fault-tolerant control strategy is presented for the control problem of a nonlinear quarter-car suspension model in the presence of model uncertainties, unknown external disturbances, and actuator failures. The adaptation algorithms are introduced to obviate the need for prior information of the bounds of faults in actuators and uncertainties in the model of the active suspension system. The finite-time convergence of the closed-loop system trajectories is proved by Lyapunov's stability theorem under the suggested control method. Finally, detailed simulations are presented to demonstrate the efficacy and implementation of the developed control strategy.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 876 ◽  
Author(s):  
Qinyue Zhu ◽  
Wei Dai ◽  
Lei Guan ◽  
Xitang Tan ◽  
Zhaoyang Li ◽  
...  

In view of the complex calculation and limited fault tolerance capability of existing neutral point shift control algorithms, this paper studies the fault-tolerant control method for sub-module faults in modular multilevel converters on the basis of neutral point compound shift control strategy. In order to reduce the calculation complexity of shift parameters in the traditional strategy and simplify its implementation, an improved AC side phase voltage vector reconstruction method is proposed, achieving online real-time calculation of the modulation wave adjustment parameters of each phase required for fault-tolerant control. Based on this, a neutral point DC side shift control method is proposed to further improve the fault tolerance capability of the modular multilevel converter (MMC) system by compensating the fault phase voltage with non-fault phase voltage. By means of the compound shift control strategy of the DC side and AC side of the neutral point, an optimal neutral point position is selected to ensure that the MMC system output line voltage is symmetrical and the amplitude is as large as possible after fault-tolerant control. Finally, the effectiveness and feasibility of the proposed control strategy are verified by simulation and low-power MMC experimental system testing.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Liang Zheng ◽  
Xuelian Dong ◽  
Qian Luo ◽  
Menglan Zeng ◽  
Xinping Yang ◽  
...  

In this paper, an adaptive sliding mode fault tolerant control (ASMFTC) approach is proposed for a class of nonlinear systems with actuator fault, uncertainty, and external disturbance. Specifically, first, a novel observer is proposed to estimate the state, actuator fault, and external disturbance. Then, by utilising the observed information, a novel output sliding mode observer is constructed. In the control method, an adaptive law and two compensators are designed to attenuate the unknown estimation errors, actuator fault, and disturbance. Furthermore, the reaching ability of the sliding motion is analysed and the H-infinite performance is introduced to ensure the robustness of the system. Finally, a flexible single joint manipulator system and a two-cart system are used to verify the effectiveness of the proposed method.


2014 ◽  
Vol 635-637 ◽  
pp. 1199-1202 ◽  
Author(s):  
Zheng Gao Hu ◽  
Guo Rong Zhao ◽  
Da Wang Zhou

For the chattering problem in the traditional sliding mode observer-based fault estimation, a second order sliding mode observer based on the Super-twisting algorithm was proposed. In order to avoid the cumbersome process of proving the stability of the Super-twisting algorithm, a Lyapunov function was adopted. An active fault tolerant control law was designed based on the fault estimation. Finally, simulation show the effectiveness of the proposed approach.


2019 ◽  
Vol 41 (13) ◽  
pp. 3756-3768 ◽  
Author(s):  
Salman Ijaz ◽  
Mirza Tariq Hamayun ◽  
Lin Yan ◽  
Hamdoon Ijaz ◽  
Cun Shi

In modern aircraft, the dissimilar redundant actuation system is used to resolve the actuator failure issues due to the common cause, thus increasing the system reliability. This paper proposes an adaptive integral sliding mode fault tolerant control strategy to deal with actuator fault/failure in the dissimilar redundant actuation system of civil aircraft. To cope with the unknown actuator faults, the adaptive integral sliding mode controller is designed where the modulation gain is made adaptive to the fault. To deal with the complete failure of certain actuator, the integral sliding mode control is integrated with control allocation scheme and distribute the control input signals to the redundant actuators. The performance of the proposed scheme is tested on the nonlinear model of dissimilar redundant actuation system, where the effect of external airload is accounted during simulations. The effectiveness of the proposed scheme is validated by comparing the simulations with the existing literature.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao He ◽  
Yamei Ju ◽  
Yang Liu ◽  
Bangcheng Zhang

The fault tolerant control problem for a DC motor system is investigated in a cloud environment. Packet dropout phenomenon introduced by the limited-capacity communication channel is considered. Actuator faults are taken into consideration and fault diagnosis and fault tolerant control methods towards actuator faults are proposed to enhance the reliability of the whole cloud-based DC motor system. The fault diagnosis unit is then established with purpose of obtaining fault information. When the actuator fault is detected by comparing the residual signal with a predefined threshold, a residual matching approach is utilized to locate the fault. The fault can be further estimated by a least-squares filter. Based on the fault estimation, a fault tolerant controller is designed to guarantee the stability as well as the control performance of the DC motor system. Simulation result on a DC motor system shows the efficiency of the fault tolerant control method proposed in this paper.


2020 ◽  
Vol 10 (10) ◽  
pp. 3503 ◽  
Author(s):  
Yu-Hsuan Lien ◽  
Chao-Chung Peng ◽  
Yi-Hsuan Chen

This paper aims to propose a strategy for the flight control of quad-rotors under single rotor failure conditions. The proposed control strategy consists of two stages—fault detection (FD) and fault tolerant control (FTC). A dual observer-based strategy for FD and fault estimation is developed. With the combination of the results from both observers, the decision making in whether a fault actually happened or the observed anomaly was caused by an external disturbance could be distinguished. Following the FD result, a control strategy for normal flight, as well as the abnormal one, is presented. The FTC considers a real-time coordinate transformation scheme to manipulate the target angles for the quad-rotor to follow a prescribed trajectory. When a rotor fault happens, it is going to be detected by the dual observers and then the FTC is activated to stabilize the system such that the trajectory following task can still be fulfilled. Furthermore, in order to achieve robust flight in the presence of external wind perturbation, the sliding mode control (SMC) theory is further integrated. Simulations illustrate the effectiveness and feasibility of the proposed method.


2020 ◽  
Vol 42 (11) ◽  
pp. 2011-2019
Author(s):  
Chengcheng Ma ◽  
Chunsheng Liu ◽  
Jiazhen Yao

In this paper, a new fault tolerant control scheme with control allocation is presented. The pseudo-inverse along the null-space control allocation is applied to the fault tolerant control system to handle the actuator constraints. The stability of the overall closed-loop system is proved via the small gain theory. The null-space vector is viewed as uncertainty, and is disposed by an integral sliding mode controller and a robust controller. The simulation results show that the new method can solve both failure scenarios and actuator saturation problems well.


Sign in / Sign up

Export Citation Format

Share Document